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�	This paper challenges two notions widely held by casualty actuaries:



Confidence level factors for aggregate distribution of loss reserves can be closely approximated using factors from the aggregate loss distribution.

 

There is no closed form probability distribution that can closely approximate the aggregate loss distribution which is the result of the convolution of a poisson frequency distribution with a severity distribution such as the lognormal (or weibull or pareto).



The confidence level factors (for all open and IBNR claims) for a given accident year evolve considerably as the accident year matures.  This is an expected result because:  



The typical severity distribution for all claims incurred for one or more  accident years includes a large number of small quickly settling claims, whereas the severity distribution for all open and IBNR claims at some age such as 12 or 24 or 36 months naturally excludes most of these smaller claims.



The number of open and IBNR claims declines substantially as an accident year ages, causing the confidence level factors to spread out.



	There is no guarantee that the compacting effect of the first phenomena will offset the dispersing effect of the second. 



This paper also presents a new probability distribution which approximates simulations of aggregate loss (and reserve) distributions much better than any of the standard distributions currently in use.  The closeness of this approximation holds up very well even at the extreme tails, including confidence levels of 98%, 99%, 99.5% and 99.9%.  It is in this region that the Heckman-Meyers algorithm tends to produce approximations that are not as good as would normally be desired.



While the new probability distribution that provides very close approximations when the underlying severity distribution is lognormal, the form of this new density function can be extended by analogy to forms that produce close approximations when the underlying severity distribution is either a weibull or a pareto distribution.  The lognormal distribution was used as the basis for most of the development work in deriving the formula for the density function of the aggregate distribution because the form of this new density function is more obviously related to that of the lognormal density function. 





�Density function of the natural logarithms of the standard lognormal distribution.



A * EXP(-B*Z2.0),

where

Z = (X - ()/(, A =  1/((2*()0.5)*( and B  =  1/(2*(2).



Density function of the natural logarithms of the 3 parameter distribution.



A * EXP(-B*Z(2.0 - C*Z)),

where Z is defined by

Z = |(X - Median)/(|.  



Necessary to define Z so that it would always be positive to prevent undefined values.  This is not an issue for the lognormal distribution, because exponent of Z is always 2.0.



Note that the median has replaced the mean.  For the lognormal, mean = median.



Example aggregate loss distribution:

Poisson frequency distribution with ( = 1,000

Lognormal severity distribution with ( = $10,000 and ( = $50,000. 

Monte Carlo simulation with 100,000 trials to model an aggregate loss distribution.



Best Fitting Three Parameter Distribution:



2.9358* EXP (-.6845 * Z 2.0- 0.1975 Z) for X > 0.0. 



  3.0420 * EXP (-.5617 * Z 2.0 + 0.2646 Z) for X < 0.0.



Observations:



The exponent of Z is < 2.0 for the upper half and > 2.0 for the lower half.  

The exponent of Z is a linear function of Z. Results in the exponent of Z deviating to an increasing degree from the 2.0 value of a lognormal distribution as Z increases. 

Distribution very similar to a lognormal distribution for X values near median.

Distribution becomes less and less like a lognormal distribution as Z increases.

Distribution has a thicker tail than the lognormal distribution at its upper end, dramatically increasing the goodness of fit to the aggregate loss distribution.

Distribution has a thinner tail than the lognormal distribution at its lower end, dramatically increasing the goodness of fit to the aggregate loss distribution.



Exhibit 1 and Graphs

Display significant improvement in goodness of fit.



�������Exhibit 1�����������Comparison of Closeness of Fit of Various Distributions ���������to the Density Function of the Simulated Outcomes ���������of the Example Aggregate Loss Distribution���������������������Average Percentage Difference������Range of Cumu-���Number of Parameters in Distribution������lative Probabilities���Two�Three�Four�Four-Alt.���99.90%�99.99%����-7.2%�-7.5%���99.0%�99.9%��-80.4%�63.0%�4.8%�3.6%���98%�99%��-54.4%�39.7%�0.3%�-4.1%���95%�98%��-32.4%�5.4%�-0.5%�-3.3%���90%�95%��-3.5%�-1.4%�-0.1%�-0.6%���80%�90%��6.8%�-1.4%�-0.7%�0.3%���70%�80%��7.2%�0.6%�0.0%�0.8%���60%�70%��5.2%�1.6%�0.9%�0.5%���50%�60%��1.0%�-1.1%�-1.4%�-2.7%���40%�50%��-0.7%�0.9%�0.2%�0.2%���30%�40%��-3.8%�-0.8%�-0.4%�-0.7%���20%�30%��-6.3%�-1.3%�-0.4%�-0.2%���10%�20%��-6.1%�0.7%�0.4%�-0.7%���1%�10%��6.4%�-3.0%�-1.6%�1.5%���������������Average Absolute Percentage Difference������50%�99%��7.1%�3.0%�1.1%�1.4%���1%�50%��5.3%�2.4%�1.4%�1.7%���������������R Squared Value������50%�99%��0.9830�0.9981�0.9985�0.9974���1%�50%��0.9918�0.9968�0.9983�0.9978���������������Percentage Reduction in the Average���������Absolute Percentage Difference������99.0%�99.9%���22%�94%�95%���98%�99%���27%�99%�92%���95%�98%���83%�99%�90%���90%�95%���61%�96%�84%���80%�90%���80%�89%�95%���70%�80%���92%�100%�89%���60%�70%���69%�83%�90%���50%�60%���-7%�-46%�-172%���40%�50%���-38%�76%�73%���30%�40%���78%�89%�81%���20%�30%���80%�94%�96%���10%�20%���89%�94%�88%���1%�10%���53%�75%�77%���

Goal is to define distributions for which:

the average percentage differences for each group of cumulative probabilities would be substantially smaller than those for the two parameter distribution.

the signs of the average percentage differences tend to alternate.  



Focusing on percentage differences highlights the goodness (or lack thereof) of fit at both ends of the aggregate loss distribution.  This is not the case when the goodness of fit criteria is a minimization of the sum of the squares of the differences.



The best fitting lognormal distribution significantly underestimated the densities for the highest confidence levels, as indicated below:



Confidence Level�Simulated 

Density�Lognormal

Density�%-age Underestimation of Simulated Density��99%�.077�.015�80%��98%�.185�.085�54%��97%�.300�.189�37%��96%�.404�.308�24%��95%�.510�.435�15%��94%�.613�.559�9%��

Aggregate loss distributions tend to be “schizophrenic”:

The shape of the lower half being less dispersed than expected.

The shape of the upper half being more dispersed than expected.  



The A and B parameters of the best fitting lognormal distribution were very close to the average of those parameters for the two halves of the new distribution.  



Param-eter�Upper Half of 

Distribution�Lower Half of 

Distribution�Average of Parameters�Lognormal Parameters��A�2.9358�3.0420�2.9889�2.9901��B�.6845�.5617�.6231�.6162��C�.1975�-.2646�-.0336�0.0��

Four Parameter Distribution Greatly Improves Fit at Tails



A * EXP(-B*Z(2.0 - C * Z^D)).



Alternative Form of Four Parameter Distribution



A * EXP(-B*Z(2.0 - C * (1 - Z)^D)).



�Comparisons with Other Common Density Functions



Lognormal is a special case.



Density function similar to Weibull. Exponent of Z ((x - L)/() in the Weibull is a constant for the entire range of x values.



Tails can be quite similar, or even thicker than, those of a Pareto.

 

Is a more general family than other common density functions.  The linear nature of the exponent of Z as Z increases, and having two values for C (CU and CL), allows for much more freedom in having the example density function conform to the aggregate loss distribution.



The proposed family could be broadened even further by making the exponent of Z a polynomial or other function.



Further Important Properties



The sum of two independent distributions is another distribution of the same family.  

The constant A is (e-1.0)^0.5  times the constant A of the underlying severity distribution. Also true for the constant C.

The sum of two correlated distributions is another member of the family.  The values of the various constants appear to be either a linear or exponential function of the correlation coefficient.



Extensions to Approximations of Aggregate Loss Distributions 

Based on Underlying Weibull and Pareto Severity Distributions



	A * EXP(-B*Z(2.0 - C*Z))      =    A * EXP(-B*Z2.0) * EXP(-BZ - C*Z)) =



              [Lognormal Density Function] * [Convolution Distortion Function]



Could use      [Pareto Density Function] * [Convolution Distortion Function].





�ESTIMATING THE VARIABILITY OF LOSS RESERVES



Approached by a combination of simulation, distribution fitting and analysis of empirical results.  

Applied to a data base of over 5,500 claims that:  1) includes the incurred and paid values of each claim at every annual evaluation date and 2) is old enough that virtually all claims have already closed. AYs 1983-1987 only.  

Know, on an after the fact basis, the size of loss distribution of all reported and of all IBNR claims making up a loss reserve at every annual evaluation date.  

Know exactly how many open and IBNR claims there were as of each of these prior dates. 

Note how the parameters of the best fitting distributions shift from a currently reported to an ultimate basis.  By analogy, the same kinds of shifts can be inferred on the current distribution of case reserves—in order to estimate the ultimate distribution of hindsight values.  



Simulate the aggregate loss distribution for the outstanding reserve for any given accident year as it progressed from 0 months of development to, for example, 120 months of development, in annual increments: 

 

As of 0 months of development, assume the number of claims is Poisson distributed with ( = total number of claims.  Assume  the size of loss distribution is defined by the actual distribution of all known settlement amounts on all claims.  Fit a common distribution to actual claim values and use it in a simulation of the aggregate loss distribution as of 0 months of development.  Fit the four parameter distribution to the simulated aggregate loss distribution and obtain a set of parameters representing the aggregate loss distribution as of 0 months of development. 



As of 12 months of development, repeat step 1 for all losses yet to be paid as of 12 months of development.  Fit the four parameter distribution to the simulated aggregate loss distribution and obtain another set of parameters.



Repeat the same process with data as of 24 months of development, 36 months, 48 months, and so forth.  Final result is a progression of 11 different aggregate distributions, from that at 0 months of development, to that at 120 months of development.  Each is represented by a set of parameters.  Through studying patterns in the progression of these parameters over time, we can closely describe how the aggregate loss distribution evolves as it progresses from early to late stages of development. 



Example of Results



��������Exhibit 6��Values of the Best Fitting Three Parameter Distribution to Simulations of the ������������Aggregate Reserve Distributions for Accident Year 1984 at Various Evaluation Dates����������������������Months of����������Develop-ment��

A��

B��

C��R Squared������������0��2.4913��0.7117��0.1675��0.9986��12��2.971��0.6344��0.1312��0.9967��24��3.2162��0.6006��0.1359��0.9986��36��2.8192��0.6031��0.1155��0.9972��48��2.3618��0.6006��0.1304��0.9986��60��1.8929��0.6231��0.1248��0.9957��72��1.3816��0.6424��0.1592��0.9964��84��0.8914��0.6074��0.1317��0.9991��96��0.5608��0.5789��0.1083��0.9982��



Relationship of Mean of Size of Case Reserve Distribution

 to Mean of Hindsight Claim Reserve Distribution



���(A)��(B)��(C)�������Mean of ��Factor to�����Mean of ��Size of ��Ultimate�����Size of��Hindsight ��of ���Age of ��Case��Claim��Distribution���Accident��Reserve��Reserve��Mean���Year (Mos.)��Distribution��  Distribution��(B)/(A)������������0��8,585��13,213��1.539���12��11,082��15,393��1.389���24��14,032��18,452��1.315���36��16,010��20,237��1.264���48��20,056��24,328��1.213���60��24,548��29,089��1.185���72��31,774��36,794��1.158���84��44,156��49,941��1.131���96��78,900��88,131��1.117��





Projection of Mean of Hindsight Size of Claim Reserve Distribution



����(A)��(B)��(C)����������Projected ����������Hindsight������Mean of ��Factor to��Mean of ������Size of��Ultimate��Size of Claim����Age of ��Case��of ��Reserve��Accident��Accident��Reserve��  Distribution��Distribution��Year��Year (Mos.)��Distribution��Mean��(A) x (B)������������1990��96��105,586��1.117��117,940��1991��84��62,636��1.131��70,841��1992��72��47,776��1.158��55,325��1993��60��39,126��1.185��46,364��1994��48��33,884��1.213��41,102��1995��36��28,671��1.264��36,241��1996��24��26,637��1.315��35,028��1997��12��22,299��1.389��30,974��

Estimating the Coefficient of Variation of Hindsight Claim Reserve Distribution



���(A)��(B)��(C)�������Coeffi-��Factor to�����Coeffi-��cient of��Ultimate�����cient of��Variation��of �����Variation��of Size of ��    Distribution������of Size of��Hindsight ��Coeffi-���Age of ��Case��Claim��cient of���Accident��Reserve��Reserve��Variation���Year (Mos.)��Distribution�� Distribution��(B)/(A)������������0��4.821��7.120��1.477���12��3.207��4.592��1.432���24��2.572��3.333��1.296���36��2.655��3.358��1.265���48��2.643��3.269��1.237���60��2.776��3.359��1.210���72��3.043��3.648��1.199���84��2.541��2.986��1.175���96��2.538��2.934��1.156��



Comparison of Confidence Level Factors for Reserves at Various Ages



Confi-�Confidence Level Factor for AY 1984 ����������dence� Reserves at X Months of Development����������Level �0�12�24�36�48�60�72�84�96��10%�0.807�0.838�0.850�0.831�0.800�0.746�0.671�0.508�0.300��30%�0.892�0.915�0.924�0.913�0.894�0.866�0.810�0.693�0.504��50%�0.964�0.978�0.984�0.978�0.970�0.963�0.927�0.862�0.717��70%�1.049�1.048�1.050�1.054�1.062�1.073�1.075�1.092�1.051��90%�1.214�1.181�1.166�1.188�1.227�1.286�1.386�1.587�1.900��95%�1.316�1.263�1.235�1.272�1.328�1.418�1.604�1.964�2.602��99%�1.714�1.484�1.400�1.498�1.637�1.804�2.327�3.141�5.174��



Comparison of Confidence Level Factors of Example Aggregate Loss 

Distribution and Example Aggregate Reserve Distribution





Confidence 

Level�Factor for Aggregate Loss Distribution for Accident Year 1984 �Factor for Aggregate Reserve Distribution for AYs 1983-87 at Dec. 1987��10%�0.810�0.899��30%�0.895�0.950��50%�0.967�0.990��70%�1.051�1.033��90%�1.216�1.107��95%�1.324�1.150��99%�1.669�1.284��

The smaller spread of confidence level factors for the reserve is due to:



The greater number of claims comprising the reserve (3,728 claims) versus the single accident year (1,160 claims).



The fact that the loss reserve is comprised of a less disparate range of claim sizes than is the collection of all claims for a single accident year.  The latter includes a high percentage of very small claims that close quickly, while the loss reserve tends to be populated by larger claims that more difficult to settle.  
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