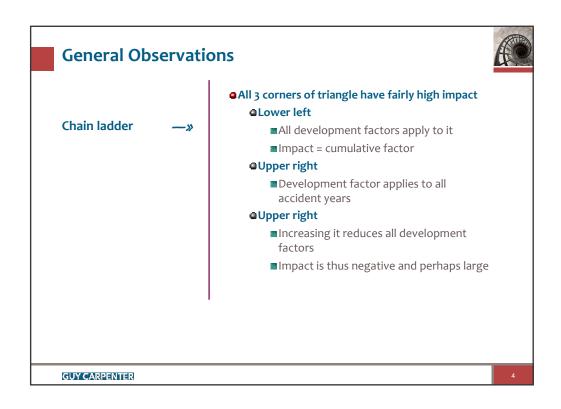
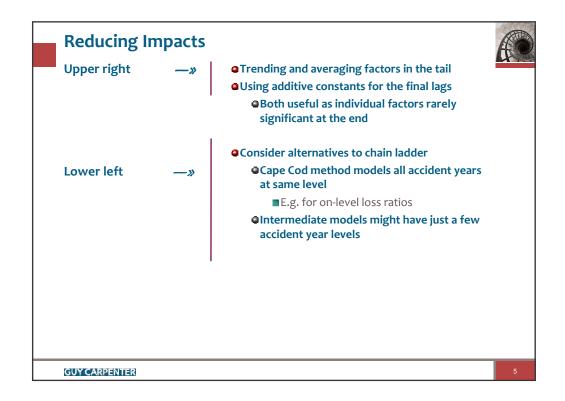
GUY CARPENTER

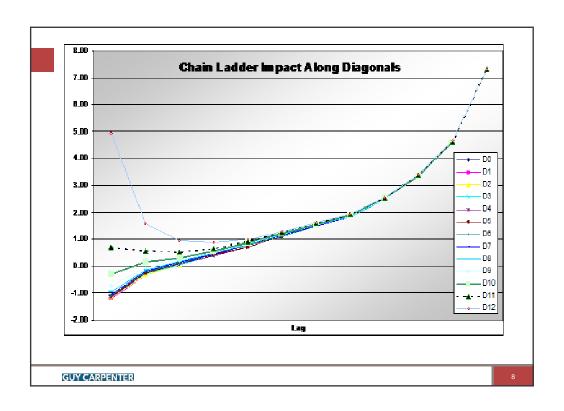

Robustifying Reserving

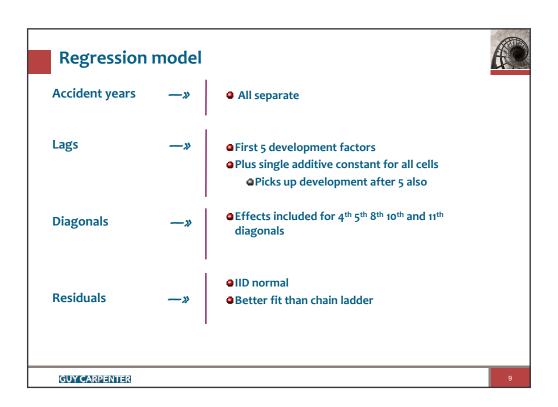

GARY G. VENTER

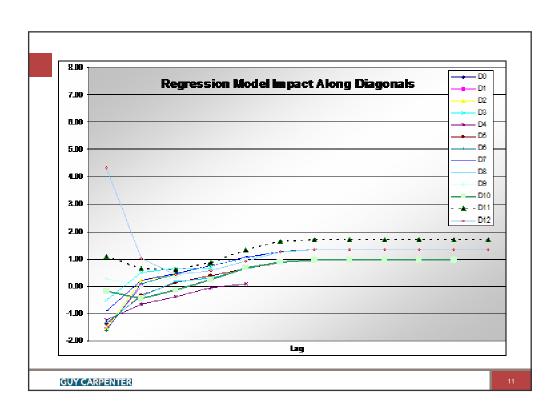


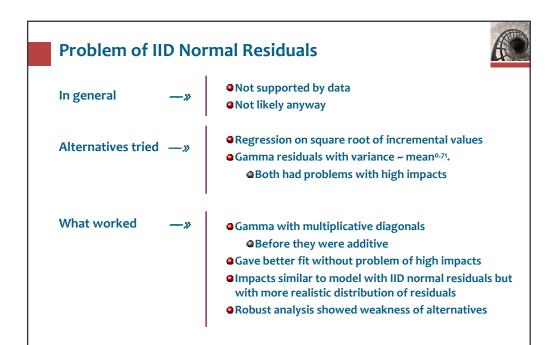
Robust Methods Classical view ● Data is generated as a sample from model process being fitted Efficiency of methods like MLE come from this view Could be a more complex process that is generating the data and model is a convenient simplification **Problems** ■Even a few points generated by a different process can throw off the estimated parameters Responses Identify and exclude outliers Try to understand when outliers arise and not use model in those circumstances Try to find models that are not so influenced by those points **GUY CARPENTER**

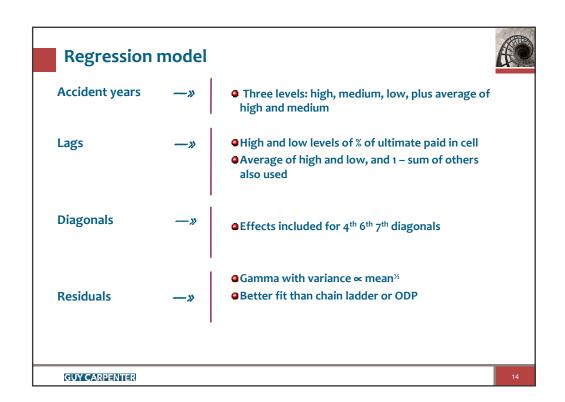
Influence Look at change in parameters from leaving out **Excluding points** observations Done for each point Called empirical influence function • Sample size times change from excluding a point is called gross error sensitivity (GES) Look for estimators with low GES but close to efficiency of MLE Look at change in parameters or predictions from changing a point **Changing points** • E.g., take the derivative of the prediction with respect to each point If the points have a lot of randomness, a point with strong effect will have strong effect from its random component **GUY CARPENTER**

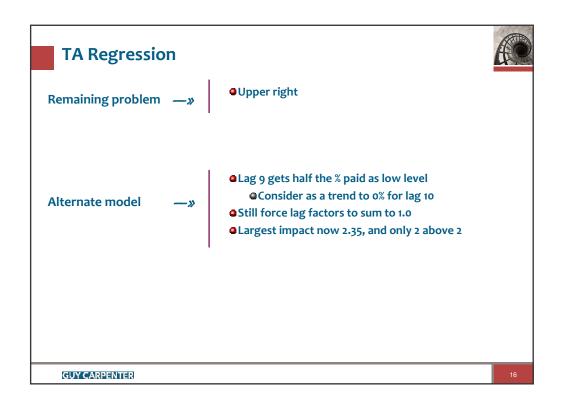





A	trian	gle										
	L0	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11
	11,305	18,904	17,474	10,221	3,331	2,671	693	1,145	744	112	40	13
	8,828	13,953	11,505	7,668	2,943	1,084	690	179	1,014	226	16	616
	8,271	15,324	9,373	11,716	5,634	2,623	850	381	16	28	558	
	7,888	11,942	11,799	6,815	4,843	2,745	1,379	266	809	12		
	8,529	15,306	11,943	9,460	6,097	2,238	493	136	11			
	10,459	16,873	12,668	9,199	3,524	1,027	924	1,190				
	8,178	12,027	12,150	6,238	4,631	919	435					
	10,364	17,515	13,065	12,451	6,165	1,381						
	11,855	20,650	23,253	9,175	10,312							
	17,133	28,759	20,184	12,874								
	19,373	31,091	25,120									
	18,433	29,131										
	20,640											
GU	Y CARPEN	ITER										


L0	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L1
-1.21	-0.34	0.04	0.39	0.73	1.10	1.48	1.85	2.46	3-35	4.61	7-3
-1.21	-0.34	0.04	0.39	0.73	1.10	1.48	1.85	2.46	3-35	4.61	7-3
-1.17	-0.29	0.08	0.44	0.78	1.14	1.53	1.89	2.51	3.39	4.66	
-1.15	-0.27	0.10	0.46	0.80	1.16	1.55	1.91	2.53	3.41		
-1.14	-0.27	0.11	0.46	0.80	1.17	1.56	1.92	2.54			
-1.10	-0.23	0.15	0.50	0.84	1.21	1.59	1.96				
-1.07	-0.20	0.18	0.53	0.87	1.24	1.62					
-1.03	-0.16	0.22	0.57	0.91	1.28						
-0.95	-0.08	0.30	0.65	0.99							
-0.73	0.14	0.52	0.87								
-0.31	0.57	0.95									
0.70	1.58										
4.95											


	Lo	L1	L2	L3	L4	L5	L6	L7	L8	L9	Li
AYo	-1.36	0.02	0.42	0.67	0.10	0.87	1.35	1.35	0.97	1.35	0.
AY1	-1.56	0.22	0.66	-0.04	0.67	1.28	1.35	0.97	1.35	0.97	1.
AY2	-1.53	0.52	-0.39	0.38	1.02	1.27	0.97	1.35	0.97	1.73	1.
AY3	-0.51	-0.64	0.15	0.78	1.07	0.90	1.35	0.97	1.73	1.35	
AY4	-1.24	-0.31	0.45	0.76	0.64	1.27	0.97	1.73	1.35		
AY5	-1.38	0.11	0.47	0.32	1.00	0.89	1.73	1.35			
AY6	-1.61	0.22	0.18	0.80	0.68	1.66	1.35				
AY7	-0.89	-0.36	0.35	0.24	1.34	1.25					
AY8	-1.34	0.00	-0.12	0.87	0.94						
AY9	0.29	-0.44	0.61	0.57							
AY10	-0.18	0.66	0.43								
AY11	1.11	1.04									
AY12	4.31										



GUY CARPENTER

pact	s of (CL an	d OE	OP or	n Tay	lor-A	she '	Triar	igle	
	L0	L1	L2	L3	L4	L5	L6	L7	L8	L9
AY0	-3.11	-1.62	-1.01	-0.45	0.01	0.51	1.16	2.27	4.54	12.59
AY1	-2.87	-1.38	-0.77	-0.20	0.25	0.76	1.40	2.51	4.78	
AY2	-2.43	-0.93	-0.33	0.24	0.69	1.20	1.85	2.95		
AY3	-2.21	-0.72	-0.11	0.45	0.91	1.41	2.06			
AY4	-1.95	-0.46	0.15	0.71	1.17	1.67				
AY5	-1.67	-0.18	0.43	0.99	1.45					
AY6	-1.25	0.25	0.85	1.42						
AY7	-0.14	1.35	1.96							
AY8	2.07	3.57								
AY9	13.45									
ARPEN	TER									

	L0	L1	L2	L3	L4	L5	L6	L7	L8	L9
AY0	0.65	-0.82	-1.08	-2.07	-0.87	0.97	-0.32	0.33	0.53	12.06
AY1	1.45	-0.02	0.68	0.60	-0.25	1.90	1.40	1.61	1.57	
AY2	1.64	0.75	-0.19	0.84	0.90	1.93	1.66	1.36		
AY3	1.26	0.43	-0.21	0.97	-0.36	1.70	1.71			
AY4	1.62	0.08	0.67	0.37	0.63	1.35				
AY5	1.19	-0.11	0.57	0.51	1.17					
AY6	2.56	1.19	0.91	1.13						
AY7	2.18	1.27	1.49							
AY8	1.72	0.92								
AY9	1.59									

Summary and Extensions

- ■Robust analysis looks for observations with high impact on result
- ■Problem in that random component would have high impact
- ■Derivative of reserve wrt each cell used as impact measure
- ■Add to list of model checks
- ■Led to finding improved models in example cases
- ■Possible extension: multiply impact by modeled standard deviation of cell estimate
 - ■Would combine impact of a small change with degree of change likely

GUY CARPENTER

7