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Overview

What is quasi-Poisson?
• Same variance relationship as Poisson 

• Defined on all non-negative values instead of just integers

Why use quasi-Poisson in practice?
• Testing in R and SAS shows quasi-Poisson models fit faster

• Predictions are balanced for categorical variables

• Simplifies the offset process

Advantages of Tweedie
• My experience on loss cost data:

• Tweedie appears to be a more appropriate model based on diagnostics

• Tweedie has slightly better predictive power

• Although the data are rarely Tweedie distributed

In practice I almost always use quasi-Poisson over Tweedie for GLM modeling



Framework

• Modeling pure premium directly as opposed to a frequency/severity 
model

• We desire an interpretable model with multiplicative rating structure
• Implies GLMs with a log link

• Performance being comparable, we prefer faster fitting models

• Primary goal is predictive power (while maintaining interpretability)
• How to measure? Gini coefficient, lift, other aggregate diagnostics



Auto Insurance Pure Premium Modeling Example

dataCar*
• This data set is based on one-year vehicle 

insurance policies taken out in 2004 or 2005.
• 67856 observations
• Frequency ~ 15.5%
• Severity ~ $1900
Fields used in sample model
• claimcst0 - loss
• Exposure
• Pure premium (pp) = claimcst0/exposure
• veh_value in $10,000s
• veh_body

• Categorical with levels BUS CONVT COUPE 
HBACK HDTOP MCARA MIBUS PANVN RDSTR 
SEDAN STNWG TRUCK UTE

• gender
• categorical with levels F M 

• agecat
• 1 (youngest), 2, 3, 4, 5, 6

5

Model
Data Adjustments
• veh_body_grp2 = grouped small exposure levels with 

other levels
• veh_val5 = vehicle value rounded to nearest 0.1 and 

capped at 5
• Transform agecat to factor to model as categorical 

variable

Target = Pure Premium (pp) = Claimcst0/exposure
Weight = exposure (EE)
Formula:

𝑝𝑝 ~ 𝑎𝑔𝑒𝑐𝑎𝑡 + 𝑔𝑒𝑛𝑑𝑒𝑟 + 𝑣𝑒ℎ_𝑏𝑜𝑑𝑦_𝑔𝑝2 + 𝑣𝑒ℎ_𝑣𝑎𝑙5

*Contained in insuranceData R package https://cran.r-project.org/web/packages/insuranceData/index.html



Initial Motivations
• Fitted GLM using a Tweedie distribution (p=1.5)

• Noticed for categorical/factor covariates that the predicted values did not match 
the actual pure premiums

• For example on our test dataset the predictions do not match on the grouped age 
variable (agecat)

agecat Earned Exposure Pure Premium Tweedie Predicted Difference%

1 2,612 500 495 -1.2%

2 5,892 337 335 -0.5%

3 7,409 288 289 0.3%

4 7,617 282 283 0.6%

5 5,171 205 206 0.5%

6 3,100 221 219 -0.6%

Total 3,100 293 293 0.0%

These mismatches occur even on large datasets with credible data. The cause is 
due to the model specification.



Why is the Tweedie GLM not balanced for categorical 
predictors?
First a review of GLM theory…

• A generalized linear model with a distribution in the natural exponential family is 
parameterized by the following:
• 𝐸 𝑦 = ℎ(𝜂), where ℎ is the inverse link and 𝜂 = 𝑿𝛽 is the linear predictor

• Log likelihood:

• 𝜃 and 𝑏 𝜃 are functions of the mean 𝜇

• 𝜙 is the dispersion parameter with weight 𝑤

• Solve for parameters 𝛽 by maximizing the log likelihood



GLM Review
-Variance Function
• Distributions in the natural exponential family are determined by the variance 

function 𝑣(𝜇)

• 𝑉 𝑦 =
𝜙

𝑤
𝑣(𝜇)

• Examples of interest
• Poisson 𝑣 𝜇 = 𝜇

• Tweedie 𝑣 𝜇 = 𝜇𝑝, 1 < 𝑝 < 2

• Gamma 𝑣 𝜇 = 𝜇2



GLM Review
-Deviance

• Deviance at observation 𝑦 with estimated mean 𝜇 (actually  𝜇)

• Where 𝜃𝑠 is the saturated model with a parameter at every observation

• 𝜃 = 𝜃(𝜇) for the current model

• Using the variance function 𝑣(𝜇), the deviance can be written in an elegant and convenient form

• Maximizing the log likelihood is equivalent to minimizing the deviance

• The total deviance is the sum over all observations



GLM Review
-Estimating Equations Simplified
• Using the variance function and definition of 

deviance the estimating equations take on a 
simplified form

• Derivation relies on chain rule:

Resulting estimating Equations:

(Notice the reversal for 𝑦𝑖 and 𝜇𝑖)



Estimating Equations
-Log link and variance power function

Log link 

• 𝜇 = ℎ 𝜂 = exp(𝜂)

• ℎ′ 𝜂 = exp 𝜂 = 𝜇

Variance power function
• 𝑣 𝜇 = 𝜇𝑝, 1 ≤ 𝑝 ≤ 2

Apply to derive simplified estimating 
equations:

Balance Equations

• Separate 𝑦𝑖 and 𝜇𝑖 to opposite sides of the equation



Bias equations for categorical variables

Sample Design Matrix

Intercept with agecat

Intercept agecat2 agecat3 agecat4 agecat5 agecat6

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 0 1 0 0 0

1 0 1 0 0 0

1 0 1 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 1 0 0

1 0 0 1 0 0

1 0 0 1 0 0

1 0 0 1 0 0

1 0 0 1 0 0

1 0 0 1 0 0

1 0 0 1 0 0

Balance equations for a categorical level
Consider the balance equation for categorical level 𝑗, say agecat2

Balance equations for level 𝑗 reduce to

When would predicted losses equal actual losses? That is,

For 𝒑 = 𝟏 the balance equations imply predictions are balanced to losses.

When 𝒑 ≠ 𝟏, then in general predictions are not balanced to losses.



Canonical Connection: Are there other cases where predictions 
are balanced to losses?

Yes, for the canonical link

• A canonical link satisfies 𝑏 𝜃 = 𝜃 in the log likelihood

• Importantly for our formulation the canonical link implies ℎ′ 𝜂 = 𝑣(𝜇)

• Recall the estimating equations, the canonical link satisfies that predictions are balanced to losses 
on categorical variables 

• Canonical link for Tweedie:

• Why not use the canonical link for Tweedie?

• Not multiplicative and numerical stability issues



Balance Equations
-Poisson Distribution
• We saw from the balance equations that 𝑝 = 1 results in predictions being 

balanced to losses
• Corresponds to the Poisson distribution

• There is a fundamental issue to using the Poisson distribution for loss cost 
modeling
• The Poisson distribution is not defined for non-integers

• Poisson probability:



Quasi-Poisson - Finally!
• Recall deviance:

• Notice that this formula for deviance only requires
• Variance function 𝑣(𝜇)

• Link 𝜇 = ℎ(𝜂)

• Design matrix and coefficients 𝜂 = 𝑿𝛽

• Nothing here requires a probability distribution

• Quasi-likelihood is defined through the above deviance as (notice the limits are switched)

• Using the quasi-likelihood we can extend to all non-negative values

• With 𝑣 𝜇 = 𝜇 the quasi-Poisson deviance is given by



Balance example on the test data set

Total Prediction

agecat

Pure 

Premium

quasi-

Poisson

Tweedie 

(p=1.5)

1 500.5 500.5 494.6

2 336.9 336.9 335.1

3 287.8 287.8 288.7

4 281.7 281.7 283.4

5 205.3 205.3 206.3

6 220.5 220.5 219.2

Within each row green indicates higher values.
Quasi-Poisson total predictions are balanced to actual pure premiums.

Total Prediction

veh_body_gp2

Pure 

Premium

quasi-

Poisson

Tweedie 

(p=1.5)

HBACK 309.3 309.3 308.4

UTE 283.6 283.6 283.7

STNWG 309.4 309.4 304.6

VAN 336.9 336.9 350.2

SEDAN 256.7 256.7 259.1

TRUCK 378.6 378.6 384.4

Total Prediction

gender

Pure 

Premium

quasi-

Poisson

Tweedie 

(p=1.5)

F 273.4 273.4 274.9

M 318.2 318.2 315.9



Can we extend the Poisson distribution to all 
non-negative values?
Answer: No
• Pmf for the Poisson distribution with mean 𝜇:

• 𝑓 𝑘 𝜇 = 𝑒−𝜇 𝑘𝜇

𝑘!
, 𝑘 ∈ 0,1,2,…

• Suppose we wanted to extend the Poisson distribution from integers to all non-negative 
numbers in a way such that the parameter estimates were unchanged

• That is, can we replace 𝑘! with a (reasonably nice) function 𝑔 such that for 𝑦 > 0

𝑓2 𝑦 𝜇 = 𝑒−𝜇 𝑦𝜇

𝑔(𝑦)
is a probability distribution?

• Natural candidate would be g y = Γ(𝑦 + 1)

• Turns out that it is not possible
• Why?

• For the curious… Proof relies on showing the moment generating functions are equal on an open 
domain. Result is to conclude distributions are in fact the same.



Is our data more quasi-Poisson or Tweedie 
distributed?
• Our data is almost certainly neither

• Check variance relationship

• Check qq-plot



Examining the variance relationship of the 
sample data
• Fit Tweedie (p=1.5) model for predicted 

mean

• Ranked low to high and binned into 20 
equal exposure bins

• On each bin calculated empirical mean 
and variance

• Plot to right shows the relationship

• Fit curve of form Varbin = 𝑎 𝜇𝑏𝑖𝑛
𝑝

• a is the intercept
• p is the fitted power (1.8 in this case)

• Suggests that a Tweedie variance 
relationship is more appropriate than 
quasi-Poisson (linear) 



QQ-plot

• qq-plots can be 
misleading for discrete 
responses

• With varied means and 
weights a qq-plot is 
more appropriate 
(asymptotically)

• qq-plot for quasi-Poisson 
looks much worse



Computing coefficient standard errors for 
quasi-likelihood

• Similar to likelihood based GLMs we 
can calculate the covariance matrix of 
the coefficients

• The coefficients are distributed 
(asymptotically) as

• Where the diagonal “weight” matrix is 
defined as 

How to calculated dispersion?

• We can’t rely on an MLE estimation

• We can use the deviance or Pearson 
estimator

• Pearson (r is the number of 
parameters)



Parameter Comparison
• Dark green represents more extreme values within a row

• %Diff shows %difference in factors between Tweedie (p=1.5) and quasi-Poisson

• %Diff =
exp 𝛽𝑞𝑢𝑎𝑠𝑖−𝑃𝑜𝑖𝑠𝑠𝑜𝑛 −exp(𝛽𝑇𝑤𝑒𝑒𝑑𝑖𝑒)

exp(𝛽𝑇𝑤𝑒𝑒𝑑𝑖𝑒)

Coefficients Tweedie

Poisson p=1.2 p=1.5 p=1.7 %Diff

(Intercept) 6.085 6.085 6.084 6.082

agecat1 (base level factor of 0)

agecat2 -0.384 -0.380 -0.376 -0.373 -0.8%

agecat3 -0.538 -0.531 -0.522 -0.517 -1.6%

agecat4 -0.558 -0.551 -0.540 -0.534 -1.8%

agecat5 -0.879 -0.872 -0.862 -0.857 -1.7%

agecat6 -0.792 -0.790 -0.788 -0.786 -0.5%

genderM 0.163 0.157 0.150 0.146 1.3%

veh_body_gp2HBACK (base level factor of 0)

veh_body_gp2SEDAN -0.148 -0.142 -0.135 -0.130 -1.3%

veh_body_gp2STNWG -0.108 -0.110 -0.112 -0.113 0.3%

veh_body_gp2TRUCK 0.026 0.039 0.057 0.068 -3.0%

veh_body_gp2UTE -0.232 -0.226 -0.219 -0.215 -1.3%

veh_body_gp2VAN 0.019 0.038 0.066 0.084 -4.5%

veh_val5 0.072 0.069 0.066 0.064 0.6%

p-value Tweedie

Poisson p=1.2 p=1.5 p=1.7

(Intercept) 0% 0% 0% 0%

agecat1 NA NA NA NA

agecat2 5% 7% 9% 11%

agecat3 1% 1% 2% 2%

agecat4 0% 1% 1% 2%

agecat5 0% 0% 0% 0%

agecat6 0% 0% 0% 0%

genderM 18% 20% 22% 24%

veh_body_gp2HBACK NA NA NA NA

veh_body_gp2SEDAN 32% 34% 37% 39%

veh_body_gp2STNWG 54% 54% 54% 54%

veh_body_gp2TRUCK 94% 91% 88% 86%

veh_body_gp2UTE 37% 38% 40% 41%

veh_body_gp2VAN 96% 92% 86% 82%

veh_val5 24% 27% 30% 32%



Tweedie log likelihood

Due to the infinite series in the likelihood, computation is computationally intensive.

See Dunn and Smyth (2008) for details.

Where 



Algorithm Speed – R glm

Overall Tweedie appears to be at least 
30% slower than quasi-Poisson on the 
test data set

• R uses the Pearson estimator for 
dispersion
• 𝑟 is the number of parameters

• Likelihood is not computed as it is 
computationally expensive (can use 
tweedie package to compute)

Model Relative Time

quasi-Poisson 1

Tweedie (p = 1.01) 1.84

Tweedie (p = 1.2) 1.53

Tweedie (p = 1.5) 1.35

Tweedie (p = 1.7) 2.28



Algorithm Speed – SAS hpgenselect

SAS hpgenselect has the option to use maximum likelihood to estimate 
the dispersion 𝜙 and power 𝑝 for the Tweedie distribution

quasi-Tweedie is an option to avoid MLE estimation of 𝜙 (similar to R)

Model Relative Time

quasi-Poisson 1

Tweedie (p and dispersion MLE estimated) 61.7

Tweedie with dispersion est. (p=1.5) 21.7

quasi-Tweedie with dispersion est. (p=1.5) 10.0

quasi-Tweedie without dispersion est. (p=1.5) 6.4



Gini Coefficient
• The Gini coefficient is a measure 

of how well the predictions rank 
the losses

• Rank low to high by the 
predictions

• Lorenz curve is the plot of 
cumulative losses vs cumulative 
exposure

• The Gini coefficient is twice the 
area between the 45 degree line 
and the Lorenz Curve

Gini Coefficient = 
2 x area

Low Risk – Exposures 
contribute fewer losses 

than average

High Risk – Exposures 
contribute more losses 

than average



Model Full Dataset Cross-Val Difference

quasi-Poisson 0.14114 0.12367 0.0175

Tweedie (p = 1.2) 0.14130 0.12374 0.0176

Tweedie (p = 1.5) 0.14173 0.12374 0.0180

Tweedie (p = 1.7) 0.14205 0.12374 0.0183

Performance - Gini

• Fit model and evaluate on entire dataset (in-sample testing)

• Cross-Val (10 fold, 5 times)

• Result
Tweedie has slightly better in-sample and cross validated performance

Quasi-Poisson shows the smallest drop in performance

Model Full Dataset Cross-Val

quasi-Poisson 0.14114 0.12367

Tweedie (p = 1.2) 0.14130 0.12374

Tweedie (p = 1.5) 0.14173 0.12374

Tweedie (p = 1.7) 0.14205 0.12374



Performance – Double Lift

• Ranked low to high by Tweedie(p=1.5)/quasi-Poisson

• Group into 5 bins
• Left chart shows actual vs predicted pure premiums

• Right chart shows percentage error in each bin



Do many statistical tests extend to quasi-
likelihood?

Yes! (Sort of)

• t-statistics

• Log likelihood ratio tests

• Chi-squared tests

• AIC
• AIC = −2loglik + 2𝑝
• These measures allow comparisons between different distributions
• Unfortunately due to the direct presence of the log likelihood in the formulas one cannot compare 

AIC on absolute terms
• Using the deviance we can compute the change in AIC

• Allows for a step-wise AIC

• Of course we still have traditional methods
• Consistency testing
• Residual and prediction plots
• Cross validation
• Bootstrap

Many results are only true asymptotically with 
weaker convergence as compared to 

likelihood based GLMs



Factor Offset

• Suppose in our model we wanted to apply fixed factors

• These could be in the current model or perhaps previously 
selected/known factors

• With loss cost data two of the most common ways to apply factors 
offsets are:
• Let 𝐹 denote multiplicative factors to offset

• Model offset: 
loss

EE
~𝜂 + log 𝐹 , weight = EE

• Exposure offset: 
loss

EE∗F
~𝜂, weight = EE∗F

• For the Tweedie model the exposure offset is not equivalent to the 
model offset



Offset Equivalence

From Shi (2009):

• 𝑢𝑖 - offset factor

• 𝑒𝑖𝑗 - exposure

• 𝑐𝑖𝑗 - claim counts

• 𝐿𝑖𝑗 - loss 



Offset Example – Tweedie

Full Model Exposure OffsetModel Offset
Coefficients

(Intercept) 6.084

agecat1 base

agecat2 -0.376

agecat3 -0.522

agecat4 -0.540

agecat5 -0.862

agecat6 -0.788

genderM 0.150

veh_body_gp2HBACK base

veh_body_gp2SEDAN -0.135

veh_body_gp2STNWG -0.112

veh_body_gp2TRUCK 0.057

veh_body_gp2UTE -0.219

veh_body_gp2VAN 0.066

veh_val5 0.066

Coefficients

(Intercept) 6.084

agecat1 base

agecat2 -0.376

agecat3 -0.522

agecat4 -0.540

agecat5 -0.862

agecat6 -0.787

genderM 0.150

veh_body_gp2HBACK NA

veh_body_gp2SEDAN NA

veh_body_gp2STNWG NA

veh_body_gp2TRUCK NA

veh_body_gp2UTE NA

veh_body_gp2VAN NA

veh_val5 0.066

Coefficients

(Intercept) 6.055

agecat1 base

agecat2 -0.395

agecat3 -0.531

agecat4 -0.564

agecat5 -0.882

agecat6 -0.810

genderM 0.139

veh_body_gp2HBACK NA

veh_body_gp2SEDAN NA

veh_body_gp2STNWG NA

veh_body_gp2TRUCK NA

veh_body_gp2UTE NA

veh_body_gp2VAN NA

veh_val5 0.052

For a quasi-Poisson model an exposure offset is equivalent to a model offset.
Performing an exposure offset then Tweedie modeling may result in a mismatch!

Based on the full model we offset the veh_body_gp2 fitted factors and refit the model.



Conclusion

Either quasi-Poisson or Tweedie can be a reasonable choice for 
modeling loss cost

On the test data set:

Quasi-Poisson
Fits faster
Predictions are balanced to losses for categorical variables
Exposure offset is equivalent to model offset

Tweedie
Variance structure can be more appropriate
Better cross validated performance
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