

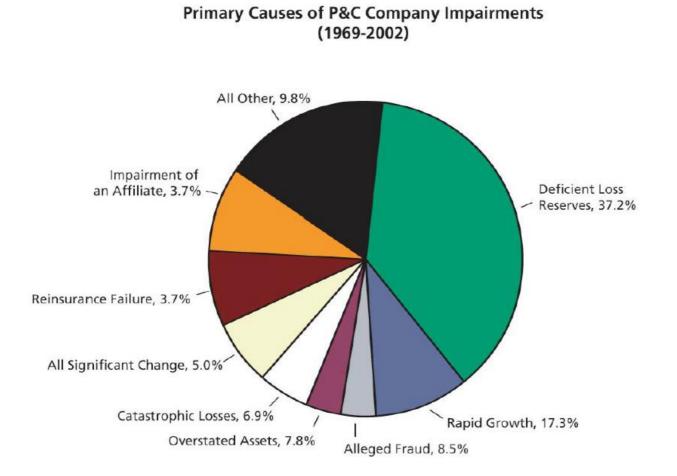
## Capital Modeling and Loss Reserve Distributions

25 August 2016

Michael Owen, FCAS Han Chen, FSA, ACAS

Singapore ARECA Conference




## AGENDA

- 1 Capital Modeling Overview WHAT ARE THE RISKS FACING AN INSURANCE COMPANY
- 2 Model Aggregation INCLUDING CORRELATIONS AND DEPENDENCIES
- 3 Stochastic Reserving LIMITATIONS AND APPLICATIONS

## AGENDA

- 1 Capital Modeling Overview WHAT ARE THE RISKS FACING AN INSURANCE COMPANY
- 2 Model Aggregation INCLUDING CORRELATIONS AND DEPENDENCIES
- 3 Stochastic Reserving LIMITATIONS AND APPLICATIONS

## **Primary Causes of US Non-Life Insurance Insolvencies**



The A.M. Best findings are consistent with those in "Failed Promises: Insurance Company Insolvencies," a 1990 U.S. Congressional. That report attributed insurer failures to under-reserving, underpricing, insufficiently supervised delegation of underwriting authority, rapid expansion, reckless management and abuse of reinsurance.

#### US Industry RBC Requirements Source: NAIC

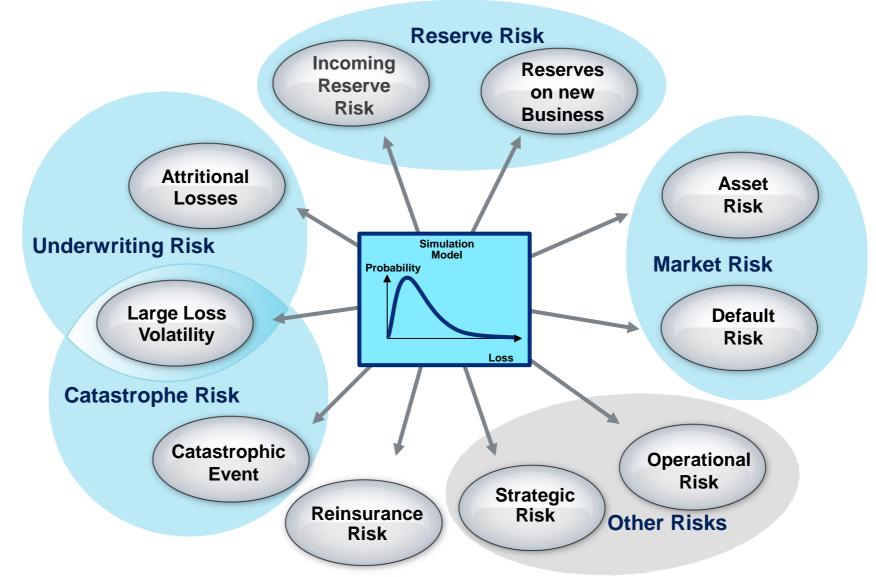
In Millions of USD

|                           |    | No Explicit<br>Cat Charge |       | 100 Year<br>100 Wi |       | 250 Year EQ &<br>100 Wind |       |  |
|---------------------------|----|---------------------------|-------|--------------------|-------|---------------------------|-------|--|
| Category                  |    | Amount                    | : (%) | Amount             | : (%) | Amount (%)                |       |  |
| Insurance Affiliates      | R0 | 49,825                    | (15%) | 52,950             | (13%) | 52,950                    | (12%) |  |
| Fixed Income              | R1 | 8,650                     | (3%)  | 8,514              | (2%)  | 8,514                     | (2%)  |  |
| Equity Investments        | R2 | 95,576                    | (28%) | 95,423             | (23%) | 95,423                    | (22%) |  |
| Credit                    | R3 | 13,675                    | (4%)  | 13,675             | (3%)  | 13,675                    | (3%)  |  |
| Reserve                   | R4 | 106,208                   | (31%) | 106,208            | (25%) | 106,208                   | (25%) |  |
| Premium                   | R5 | 67,574                    | (20%) | 62,079             | (15%) | 62,079                    | (14%) |  |
| Earthquake                | R6 | 0                         | (0%)  | 28,687             | (7%)  | 40,855                    | (10%) |  |
| Hurricance                | R7 | 0                         | (0%)  | 49,006             | (12%) | 49,006                    | (11%) |  |
| Required Capital          |    | 208,706                   |       | 219,454            |       | 221,976                   |       |  |
| Actual Capital            |    | 826,627                   |       | 826,627            |       | 826,627                   |       |  |
| Required / Actual Capital |    |                           | 3.96  |                    | 3.77  |                           | 3.72  |  |

Required Capital =  $R0 + (R1^2 + R2^2 + R3^2 + R4^2 + R5^2 + R6^2 + R7^2)^{1/2}$ 

#### Capital Requirements in Japan Japan FSA Solvency Margin Ratio Calculations (FY 2014)

| Individual or Organization                              | Number of<br>shares held<br>(thousands) |
|---------------------------------------------------------|-----------------------------------------|
| Japan Trustee Services Bank, Ltd.<br>(Trust Account)    | 104,755                                 |
| Moxley & Co                                             | 83,945                                  |
| The Master Trust Bank of Japan, Ltd.<br>(Trust Account) | 70,922                                  |
| State Street Bank and Trust Company 505223              | 52,503                                  |
| Meiji Yasuda Life Insurance Company                     | 51,199                                  |
| State Street Bank and Trust Company                     | 43,820                                  |
| Tokio Marine & Nichido Fire Insurance<br>Co., Ltd.      | 42,553                                  |
| The Bank of Tokyo-Mitsubishi UFJ,<br>Ltd.               | 36,686                                  |
| Nippon Life Insurance Company                           | 27,066                                  |
| Mitsui Sumitomo Insurance Co., Ltd.                     | 25,739                                  |


#### In Millions of of USD (1 USD = 100 JPY)

|                         |        | Compa | ny A   | Compa | ny B   | Compa | ny C       | Company D |       |  |
|-------------------------|--------|-------|--------|-------|--------|-------|------------|-----------|-------|--|
| Category                | Amount | : (%) | Amount | t (%) | Amount | : (%) | Amount (%) |           |       |  |
| Insurance Risk          | R1     | 1,627 | (12%)  | 1,767 | (20%)  | 1,153 | (12%)      | 985       | (25%) |  |
| 3rd Sector (Medical)    | R2     | 0     | (0%)   | 0     | (0%)   | 0     | (0%)       | 0         | (0%)  |  |
| Interest Rate Risk      | R3     | 256   | (2%)   | 233   | (3%)   | 184   | (2%)       | 94        | (2%)  |  |
| Investment Risk         | R4     | 8,603 | (64%)  | 5,121 | (57%)  | 6,140 | (66%)      | 2,273     | (57%) |  |
| Risk Management Control | R5     | 262   | (2%)   | 176   | (2%)   | 181   | (2%)       | 78        | (2%)  |  |
| Cat Risk                | R6     | 2,604 | (20%)  | 1,678 | (19%)  | 1,580 | (17%)      | 553       | (14%) |  |

|                           | Company A | Company B | Company C | Company D | Total   |
|---------------------------|-----------|-----------|-----------|-----------|---------|
| Required Capital          | 11,873    | 7,492     | 8,189     | 3,194     | 30,749  |
| Actual Capital            | 44,626    | 26,833    | 26,679    | 12,856    | 110,995 |
| Required / Actual Capital | 3.76      | 3.58      | 3.26      | 4.02      | 3.61    |

Required Capital =  $((R1 + R2)^2 + (R3 + R4)^2)^{1/2} + R5 + R6$ 

## **Capital Model**



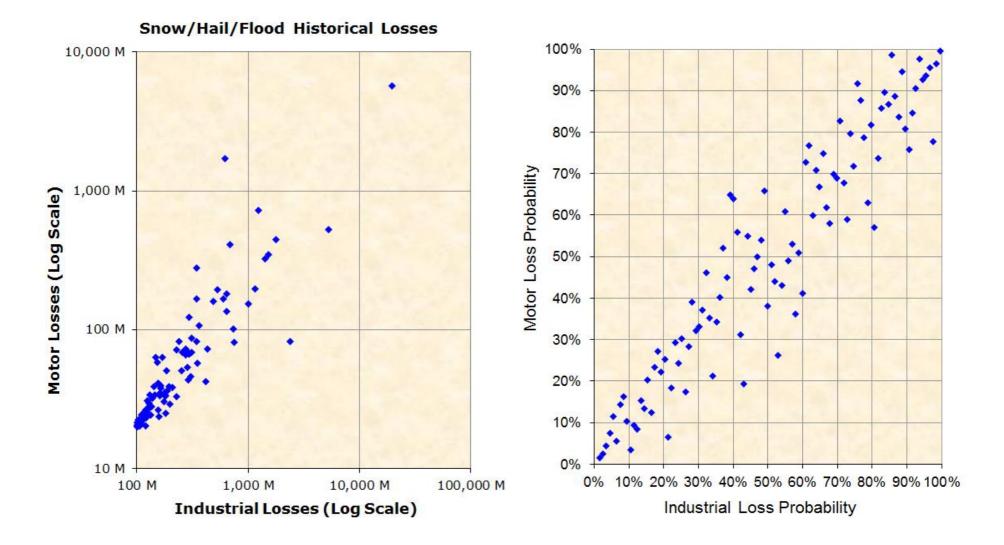
• Underwriting and reserve risk typically done by line of business.

## **Building in Correlation**

- For Catastrophe losses, the catastrophe models take care of this.
- Economic scenario files are used to model the asset risk and can include inflation indexes for wages, medical costs, construction costs, etc.
  - Higher or lower than expected inflation can be used to adjust future payments up or down
  - These indexes can be used to correlate assets and liabilities
- For non-catastrophe losses, correlation is typically modelled using **copulas**, **indexes**, and inflation.

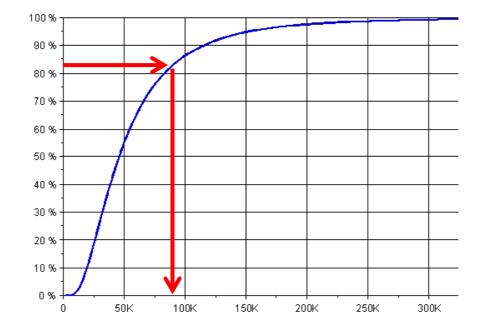
## AGENDA

- 1 Capital Modeling Overview WHAT ARE THE RISKS FACING AN INSURANCE COMPANY
- 2 Model Aggregation INCLUDING CORRELATIONS AND DEPENDENCIES
- 3 Stochastic Reserving LIMITATIONS AND APPLICATIONS


## **Introduction to Copulas**

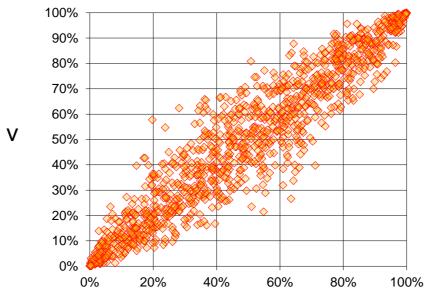
- Copulas are used to generate correlated random deviates
- Copulas can be used to correlate:
  - two or more losses caused from the same event
  - aggregates losses
  - claim count distributions
  - loss reserves

## **The Names**

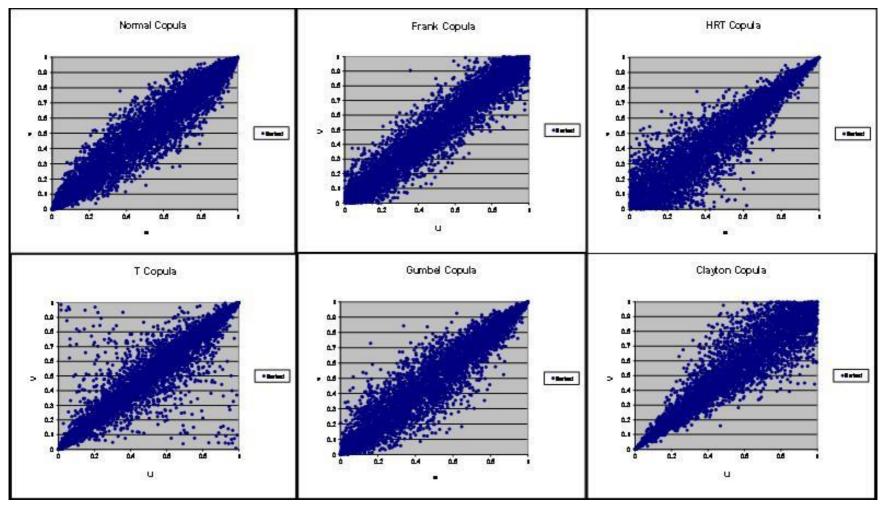

- Right Tailed
  - Frank Light
    Normal
    T
    Gumbel
    HRT (Heavy Right Tail) Heavy
- Left Tailed
  - Flipped Gumbel
  - Flipped HRT (Clayton)

## **Sample Data**



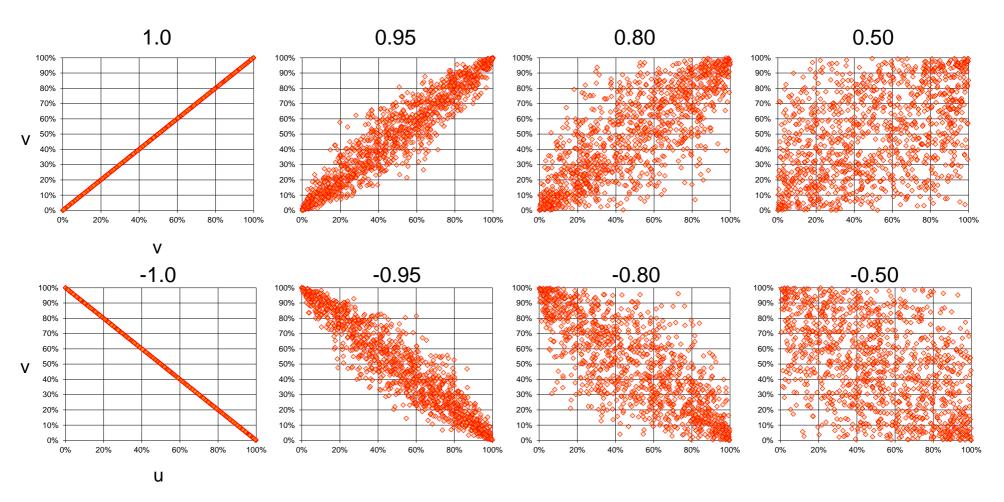

## **Running a Simulation Model**

- To simulated losses, you generate a random number, u, and then find the corresponding loss value using F<sup>-1</sup>(u), where F(x) is the cumulative distribution function of x.
- For example, if u=0.83, the corresponding loss would be roughly 90,000.



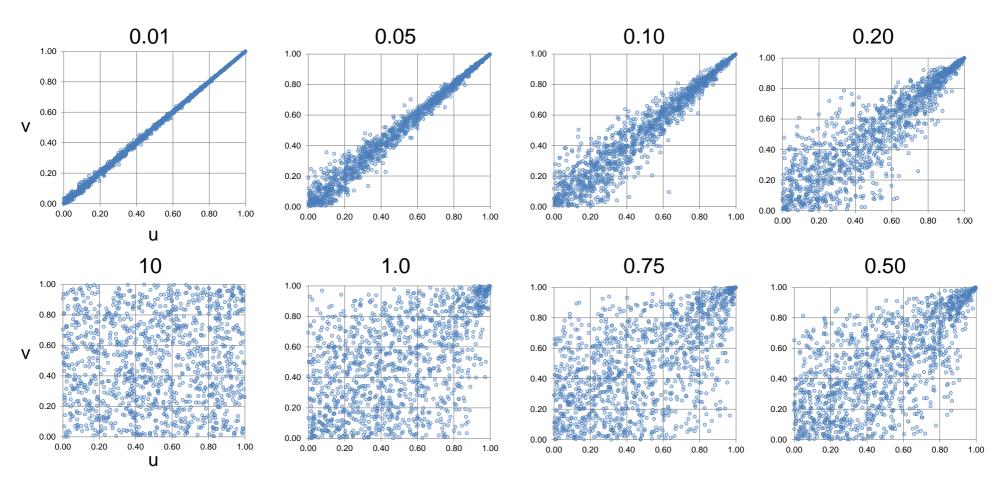

#### **Running a Simulation Model**

- When you have two losses that are correlated, you generate two random numbers, u and v, that are correlated. For example, u=.83 and v=.88.
- You then calculated F<sup>-1</sup>(u) and G<sup>-1</sup>(v) where F(x) and G(x) are the two cumulative loss distributions.
- The correlated pair of random numbers are generated using copulas.




## Six Copulas with the Same Correlation




The above copulas all have the same level of positive correlation as measured by Kendall's tau and shows the effect of choosing different copulas

#### Normal Copula with different Parameters, "a"

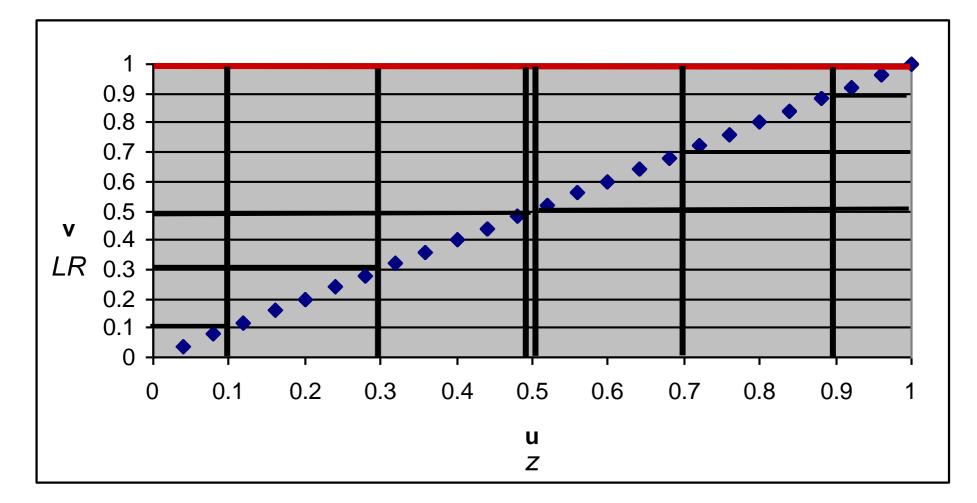


u = random number, p = random number, v uses the formula below v = NORMDIST(NORMINV(u,0,1)\*a + NORMINV(p,0,1)\*(1-a^2)^0.5,0,1,1)

#### HRT Copula with tail Parameters, "a"

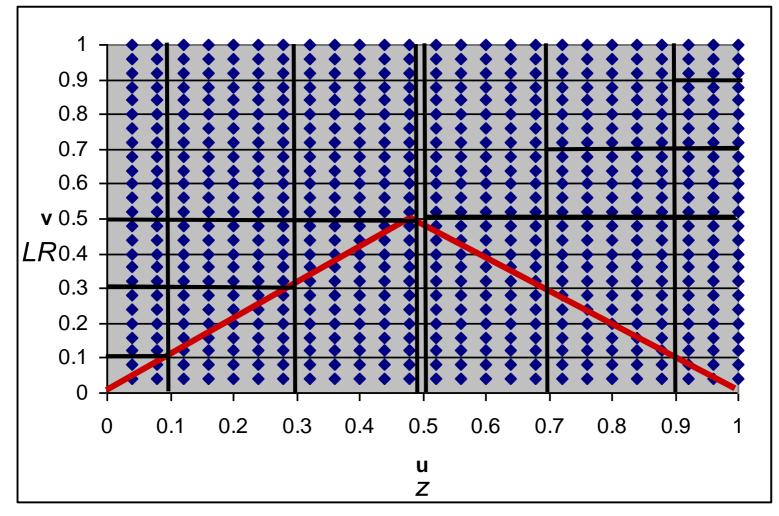


u = random number, p = random number, v uses the formula below v =  $1-\{1-(1-u)^{-1/a}+[(1-p)(1-u)^{1+1/a}]^{-1/(a+1)}\}^{-a}$ 


## **Visually Comparing Fits to Data**

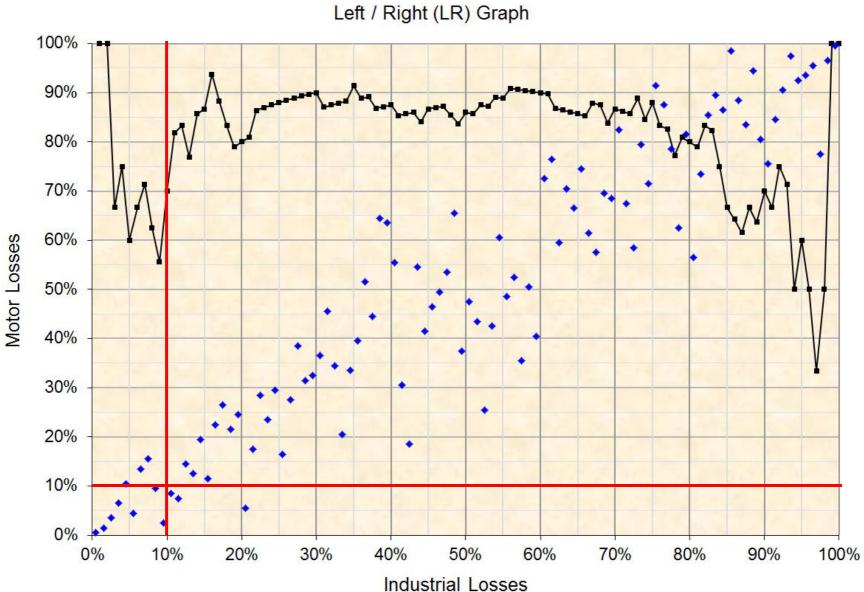
- Visually hard to compare "Side-by-Side"
- Visual Solution: Left Right Tail Concentration Functions that graph the coordinates of (z, LR(z)) where

LR(z) = (z <=.5)\*Pr(v < z | u < v) + (z > .5)\*Pr(v > z | u > z)

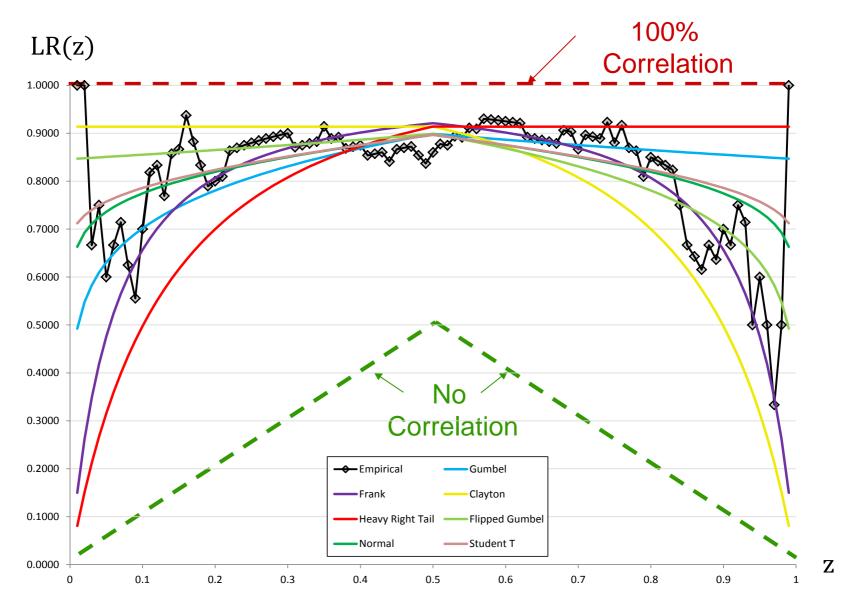

 $LR(z) = (z \le 5) Pr(v \le z, u \le z)/z + (z \ge 5) Pr(v \ge z, u \ge z)/(1-z)$ 

#### Understanding Left Right (LR) Graphs Correlated data




For 100% correlated data LR function = 100%

#### Understanding LR Graphs Uncorrelated data




For uncorrelated data L(z) = z and R(z) = 1 - z

## **Fitting a Copula**



## **Comparing Copula Fits**



#### Indexes

- An index be used to correlate many different lines of business
- An index can be applied to claim count distributions (contagion)
- An index can be used to correlate severity distributions
- An index can be used to aggregate losses
  - Such as a lognormal, with a mean of 1 and cv of 5% that applies to multiple lines of business
  - Such as applying one index to two or more severity distributions
- An index can be used to correlate premiums

#### **Frequency Correlation**

- If you mix a Poisson distribution with a mean, λ, by a Gamma distribution with a mean=1 and variance, *c*, the resulting distribution is equivalent to a Negative Binomial with a mean of λ and a variance to mean ratio of 1 + cλ
  - The Gamma distribution can be shared across multiple Poisson distributions. In this case, the new frequencies coefficient of variations are:

- The CV's are 
$$CV_{N_i} = \sqrt{1/\lambda_{N_i} + c} = \sqrt{(CV_{N_i})^2 + c}$$

- And the correlation between the two frequency distributions is:

$$\rho_{N_1,N_2} = \sqrt{\frac{c\lambda_{N_1}}{1+c\lambda_{N_1}}} \sqrt{\frac{c\lambda_{N_2}}{1+c\lambda_{N_2}}} \qquad \qquad \rho_{N_1,N_2} = \frac{c}{\sqrt{\frac{1}{\lambda_{N_1} + c}}} \sqrt{\frac{1}{\lambda_{N_2} + c}}$$

- c is sometime referred to as a contagion.

#### Correlating two claim count distributions using shared contagion

- Contagion parameter c = 0.20
- Loss Cause 1 has a Poisson distribution with frequency of 2
- Loss Cause 2 has a Poisson distribution with frequency of 10

|                      | Loss Cause 1 | Loss Cause 2  | Combined      |
|----------------------|--------------|---------------|---------------|
| Mean                 | \$2.0027     | \$9.9976      | \$12.0003     |
| Standard Deviation   | \$1.6697     | \$5.4645      | \$6.3771      |
| CV                   | 83.375231 %  | 54.658342 %   | 53.141295 %   |
| Minimum              | \$0.000      | \$0.0000      | \$0.0000      |
| Maximum              | \$14.0000    | \$49.0000     | \$58.0000     |
| Samples              | 100000       | 100000        | 100000        |
| Non-Zero Probability | 81.564000 %  | 99.612000 %   | 99.794000 %   |
| Variance             | 2.7879729244 | 29.8610642879 | 40.6673899271 |

- New variance to mean ratios should be
  - Loss Cause 1: 1 + 0.2 x 2 = 1.4
  - Loss Cause 2: 1 + 0.2 x 10 = 3.0

$$\rho_{N_1,N_2} = \sqrt{\frac{c\lambda_{N_1}}{1+c\lambda_{N_1}}} \sqrt{\frac{c\lambda_{N_2}}{1+c\lambda_{N_2}}} \qquad \rho_{1,2} = \sqrt{\frac{.2 \times 2}{1+.2 \times 2}} \sqrt{\frac{.2 \times 10}{1+.2 \times 10}} = 43.64\%$$

$$\tilde{\rho}_{1,2} = \frac{40.67 - 2.79 - 29.86}{2\sqrt{2.79 \times 29.86}} = 43.94\%$$

# How Correlated are Two Frequency Distributions that share the same Contagion?

- If the frequency of one of the distributions is zero, then the correlation is zero
- As the frequency of one of the distributions gets close to zero, the correlation gets smaller.
- As the frequency increases the correlation increases.
- Resulting Correlation

| c = 0.10 | 0.1  | 1     | 10    | 100   | 1000  | c = 0.20 | 0.1   | 1     | 10    | 100   | 1000  |
|----------|------|-------|-------|-------|-------|----------|-------|-------|-------|-------|-------|
| 0.1      | 1.0% | 3.0%  | 7.0%  | 9.5%  | 9.9%  | 0.1      | 2.0%  | 5.7%  | 11.4% | 13.7% | 14.0% |
| 1        | 3.0% | 9.1%  | 21.3% | 28.7% | 30.0% | 1        | 5.7%  | 16.7% | 33.3% | 39.8% | 40.7% |
| 10       | 7.0% | 21.3% | 50.0% | 67.4% | 70.4% | 10       | 11.4% | 33.3% | 66.7% | 79.7% | 81.4% |
| 100      | 9.5% | 28.7% | 67.4% | 90.9% | 94.9% | 100      | 13.7% | 39.8% | 79.7% | 95.2% | 97.3% |
| 1000     | 9.9% | 30.0% | 70.4% | 94.9% | 99.0% | 1000     | 14.0% | 40.7% | 81.4% | 97.3% | 99.5% |

## **Example of a Severity Mixing**

- An index can be applied to the severity distribution or the aggregate distribution (called a mixing distribution)
- For the mixing index, M, assume it follows a lognormal distribution with mean = 1 and variance of *m*
- The resulting CV of the mixed distribution is

$$CV_{M\cdot S} = \sqrt{\left(CV_S^2 + m + CV_S^2 m\right)}$$

#### **Correlation Resulting from a Shared Mixing Distribution** Severity / Aggregate Correlation

The correlation is:

$$\rho_{S_1,S_2} = \frac{m}{\sqrt{CV_{S_1}^2(1+m) + m}\sqrt{CV_{S_2}^2(1+m) + m}}$$

If you divide the top and bottom by (1 + m) you get the following

$$\rho_{S_1,S_2} = \frac{\left(\frac{m}{(1+m)}\right)}{\sqrt{CV_{S_1}^2 + \frac{m}{(1+m)}}\sqrt{CV_{S_2}^2 + \frac{m}{(1+m)}}}$$

This looks like the contagion correlation with  $c = \left(\frac{m}{(1+m)}\right)$ 

#### **Example Correlation Resulting from a Shared Mixing Distribution** Impact of increasing the Aggregate CV

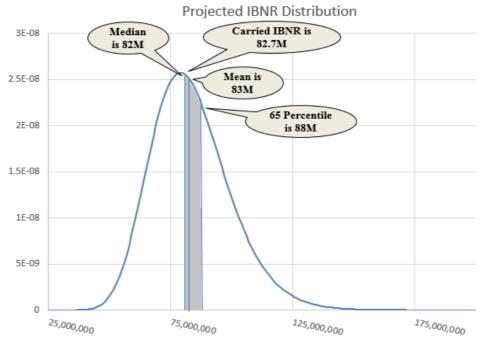
- For a fixed mixing parameter, *m* (mean of 1, variance of *m*)
  - Correlation decreases as the CV of the severity distributions increase.

$$\rho_{S_1,S_2} = \frac{\left(\frac{m}{(1+m)}\right)}{\sqrt{CV_{S_1}^2 + \frac{m}{(1+m)}}\sqrt{CV_{S_2}^2 + \frac{m}{(1+m)}}}$$

m

CV2

0.1


|   |      | CV1     |        |        |        |        |        |        |        |        |        |        |
|---|------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| _ |      | 0%      | 10%    | 20%    | 30%    | 40%    | 50%    | 60%    | 70%    | 80%    | 90%    | 100%   |
|   | 0%   | 100.00% | 94.92% | 83.33% | 70.89% | 60.19% | 51.64% | 44.90% | 39.56% | 35.27% | 31.77% | 28.87% |
|   | 10%  | 94.92%  | 90.09% | 79.10% | 67.28% | 57.13% | 49.01% | 42.62% | 37.55% | 33.47% | 30.15% | 27.40% |
|   | 20%  | 83.33%  | 79.10% | 69.44% | 59.07% | 50.16% | 43.03% | 37.42% | 32.97% | 29.39% | 26.47% | 24.06% |
|   | 30%  | 70.89%  | 67.28% | 59.07% | 50.25% | 42.67% | 36.61% | 31.83% | 28.04% | 25.00% | 22.52% | 20.46% |
|   | 40%  | 60.19%  | 57.13% | 50.16% | 42.67% | 36.23% | 31.08% | 27.03% | 23.81% | 21.23% | 19.12% | 17.38% |
|   | 50%  | 51.64%  | 49.01% | 43.03% | 36.61% | 31.08% | 26.67% | 23.19% | 20.43% | 18.21% | 16.40% | 14.91% |
|   | 60%  | 44.90%  | 42.62% | 37.42% | 31.83% | 27.03% | 23.19% | 20.16% | 17.76% | 15.84% | 14.26% | 12.96% |
|   | 70%  | 39.56%  | 37.55% | 32.97% | 28.04% | 23.81% | 20.43% | 17.76% | 15.65% | 13.95% | 12.57% | 11.42% |
|   | 80%  | 35.27%  | 33.47% | 29.39% | 25.00% | 21.23% | 18.21% | 15.84% | 13.95% | 12.44% | 11.20% | 10.18% |
|   | 90%  | 31.77%  | 30.15% | 26.47% | 22.52% | 19.12% | 16.40% | 14.26% | 12.57% | 11.20% | 10.09% | 9.17%  |
|   | 100% | 28.87%  | 27.40% | 24.06% | 20.46% | 17.38% | 14.91% | 12.96% | 11.42% | 10.18% | 9.17%  | 8.33%  |

## AGENDA

- 1 Capital Modeling Overview WHAT ARE THE RISKS FACING AN INSURANCE COMPANY
- 2 Model Aggregation INCLUDING CORRELATIONS AND DEPENDENCIES
- 3 Stochastic Reserving LIMITATIONS AND APPLICATIONS

## **Stochastic Reserving**

- Goal of Stochastic Reserving
  - Reserve should not be just a point estimation
  - Stochastic reserving provides a predictive distribution
  - Useful in capital modeling, reserve adequacy analysis, and loss reserve margins



## **Popular Methods**

- Various stochastic reserving methods and authors
  - Mack
  - Bootstrapping (England and Verrall)
  - Generalized Linear Modeling (GLM)
  - Merz Wüthrich
  - Rehman Klugman
  - Roger Hayne
  - Daniel Murphy
  - Gary Venter

## Mack

- Mack method is one of the most commonly used stochastic reserving methods.
  - Based on chain-ladder Method
  - Easy to implement
  - No distribution generated
  - Assumes accident years (AY) are independent

## Bootstrapping

- Bootstrapping method is a very versatile model for estimating reserve distribution
  - No distributional assumption
  - Level of skewness in the data is automatically reflected
  - More complex to build
  - A deep understanding of underlying model and data is required

## GLM

- GLM method is a flexible generalization of ordinary linear regression
  - Allows various distribution assumptions from exponential family
  - Able to view trends in three different directions
  - Requires manual adjustments after initial fitting
  - Has more flexibility in reserve mean selection

## Merz - Wüthrich

- Merz Wüthrich method produces one year reserve risk
  - Definition: The variance of difference between expected ultimate losses at time t and t + 1
  - Based on chain ladder model assumptions
  - Useful for Solvency II

## Rehman - Klugman

- Rehman Klugman method produces reserve risk based on ultimate loss triangle instead of paid/incurred loss triangle
  - Assume age-to-age ratios of estimated ultimates follow lognormal distribution
  - Consider correlation in development year (DY) direction
  - Not able to normalize each AY by exposure size

#### Practical Expectations from Stochastic Reserving

- Expectations of Stochastic Reserving Results from a Practical Reserving Actuary
  - Stochastic mean should be close to deterministic mean
    - Otherwise stochastic distribution is not reliable
  - CV should be stable from year to year when there is no significant change in the business nature
  - CV should decrease as loss data mature
    - Backtesting with calendar year data removed

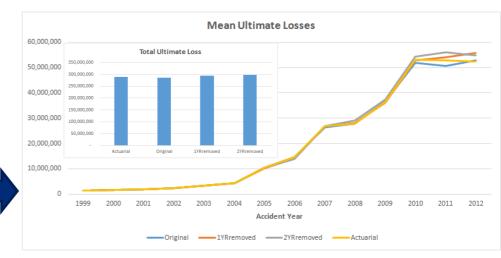
### **Practical Expectations from Stochastic Reserving**

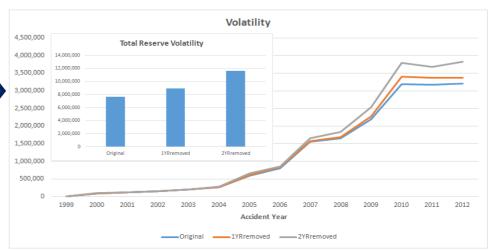
- Expectations of Stochastic Reserving Results from a Practical Reserving Actuary
  - Stochastic mean should be close to deterministic mean
    - Otherwise stochastic distribution is not reliable
  - CV should be stable from year to year when there is no significant change in the business nature
  - CV should decrease as loss data mature
    - Backtesting with calendar year data removed

### **Practical Expectations from Stochastic Reserving**

- Expectations of Stochastic Reserving Results from a Practical Reserving Actuary
  - Stochastic mean should be close to deterministic mean
    - Otherwise stochastic distribution is not reliable
  - CV should be stable from year to year when there is no significant change in the business nature
  - CV should decrease as loss data mature
    - Backtesting with calendar year data removed

# **Backtesting**


|          | Loss Triang | le         |              |              |             |             |                    |             |               |             |             |             |             |             |            |
|----------|-------------|------------|--------------|--------------|-------------|-------------|--------------------|-------------|---------------|-------------|-------------|-------------|-------------|-------------|------------|
|          | AY/DY       | 1          | 2            | 3            | 4           | 5           | 6                  | 7           | 8             | 9           | 10          | 11          | 12          | 13          | 14         |
|          | 2001        | 19,303,998 | 41,715,012   | 29,374,058   | 11,835,301  | 13,061,422  | 13,048,744         | 13,036,421  | 13,024,451    | 13,012,834  | 13,001,568  | 12,990,653  | 12,980,088  | 12,969,873  | 12,960,005 |
|          | 2002        | 59,626,420 | 128,774,467  | 90,676,813   | 100,044,603 | 110,411,411 | 110,305,867        | 110,203,317 | 110, 103, 753 | 110,007,166 | 109,913,549 | 109,822,895 | 109,735,196 | 109,650,445 |            |
|          | 2003        | 3,165,898  | 6,834,223    | 13,180,672   | 14,542,236  | 16,048,990  | 16,033,878         | 16,019,201  | 16,004,957    | 15,991,146  | 15,977,766  | 15,964,816  | 15,952,296  |             |            |
| Original | 2004        | 1,019,259  | 6,021,750    | 11,613,405   | 12,812,964  | 14,140,428  | 14,127,254         | 14,114,463  | 14,102,054    | 14,090,026  | 14,078,378  | 14,067,108  |             |             |            |
| Chighian | 2005        | 4,569,334  | 26,995,449   | 52,062,955   | 57,440,425  | 63,391,256  | <i>63,332,77</i> 5 | 63,276,008  | 63,220,952    | 63,167,602  | 63,115,954  |             |             |             |            |
| Loss     | 2006        | 19,167,417 | 113,240,163  | 218,393,728  | 240,950,468 | 265,912,203 | 265,669,299        | 265,433,585 | 265,205,042   | 264,983,651 |             |             |             |             |            |
| Trionalo | 2007        | 2,704,564  | 15,977,804   | 30,816,164   | 33,999,200  | 37,521,629  | 37,487,640         | 37,454,666  | 37,422,702    |             |             |             |             |             |            |
| Triangle | 2008        | 2,096,923  | 12,392,068   | 23,901,097   | 26,370,276  | 29,102,776  | 29,076,566         | 29,051,142  |               |             |             |             |             |             |            |
|          | 2009        | 8,224,572  | 48,606,168   | 93, 749, 306 | 103,436,501 | 114,156,977 | 114,054,393        |             |               |             |             |             |             |             |            |
|          | 2010        | 1,692,907  | 10,005,388   | 19,298,004   | 21,292,853  | 23,500,559  |                    |             |               |             |             |             |             |             |            |
|          | 2011        | 6,897,527  | 40, 720, 852 | 78,616,961   | 86,739,070  |             |                    |             |               |             |             |             |             |             |            |
|          | 2012        | 8,426,937  | 49,750,011   | 96,048,939   |             |             |                    |             |               |             |             |             |             |             |            |
|          |             |            |              |              |             |             |                    |             |               |             |             |             |             |             |            |


( Cal Ren L Tria

|         |   | Loss Triang | jle        |             |              |             |              |             |             |               |             |             |             |               |            |    |
|---------|---|-------------|------------|-------------|--------------|-------------|--------------|-------------|-------------|---------------|-------------|-------------|-------------|---------------|------------|----|
|         |   | AY/DY       | 1          | 2           | 3            | 4           | 5            | 6           | 7           | 8             | 9           | 10          | 11          | 12            | 13         | 14 |
| _       |   | 2001        | 19,303,998 | 41,715,012  | 29,374,058   | 11,835,301  | 13,061,422   | 13,048,744  | 13,036,421  | 13,024,451    | 13,012,834  | 13,001,568  | 12,990,653  | 12,980,088    | 12,969,873 |    |
| One     |   | 2002        | 59,626,420 | 128,774,467 | 90,676,813   | 100,044,603 | 110,411,411  | 110,305,867 | 110,203,317 | 110, 103, 753 | 110,007,166 | 109,913,549 | 109,822,895 | 109, 735, 196 |            |    |
|         |   | 2003        | 3,165,898  | 6,834,223   | 13,180,672   | 14,542,236  | 16,048,990   | 16,033,878  | 16,019,201  | 16,004,957    | 15,991,146  | 15,977,766  | 15,964,816  |               |            |    |
| alenda  | r | 2004        | 1,019,259  | 6,021,750   | 11,613,405   | 12,812,964  | 14,140,428   | 14,127,254  | 14,114,463  | 14,102,054    | 14,090,026  | 14,078,378  |             |               |            |    |
| Year    |   | 2005        | 4,569,334  | 26,995,449  | 52,062,955   | 57,440,425  | 63,391,256   | 63,332,775  | 63,276,008  | 63,220,952    | 63,167,602  |             |             |               |            |    |
| IEal    |   | 2006        | 19,167,417 | 113,240,163 | 218,393,728  | 240,950,468 | 265,912,203  | 265,669,299 | 265,433,585 | 265,205,042   |             |             |             |               |            |    |
| emove   |   | 2007        | 2,704,564  | 15,977,804  | 30,816,164   | 33,999,200  | 37,521,629   | 37,487,640  | 37,454,666  |               |             |             |             |               |            |    |
|         |   | 2008        | 2,096,923  | 12,392,068  | 23,901,097   | 26,370,276  | 29, 102, 776 | 29,076,566  |             |               |             |             |             |               |            |    |
| Loss    |   | 2009        | 8,224,572  | 48,606,168  | 93, 749, 306 | 103,436,501 | 114,156,977  |             |             |               |             |             |             |               |            |    |
| riangle |   | 2010        | 1,692,907  | 10,005,388  | 19,298,004   | 21,292,853  |              |             |             |               |             |             |             |               |            |    |
| nanyie  |   | 2011        | 6,897,527  | 40,720,852  | 78,616,961   |             |              |             |             |               |             |             |             |               |            |    |
|         |   | 2012        | 8,426,937  | 49,750,011  |              |             |              |             |             |               |             |             |             |               |            |    |
|         |   |             |            |             |              |             |              |             |             |               |             |             |             |               |            |    |

### **Backtesting Results**

|       |             | Mean Ultim  | ate Losses  |             |           | Standard Devia | emoved         2YRremoved           0         0           94,252         96,777           113,766         117,202           146,827         151,507           198,098         205,022           268,167         280,845           607,389         652,125           832,008         859,923           ,568,563         1,649,190           ,693,468         1,832,646           ,280,994         2,539,227           ,398,056         3,790,854           ,364,015         3,682,382 |  |  |
|-------|-------------|-------------|-------------|-------------|-----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| AY    | Actuarial   | Original    | 1YRremoved  | 2YRremoved  | Original  | 1YRremoved     | 2YRremoved                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 1999  | 1,385,631   | 1,385,631   | 1,385,631   | 1,385,631   | 0         | 0              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 2000  | 1,632,333   | 1,632,332   | 1,632,332   | 1,632,332   | 93,156    | 94,252         | 96,777                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 2001  | 1,888,505   | 1,888,505   | 1,888,505   | 1,888,505   | 112,177   | 113,766        | 117,202                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 2002  | 2,417,283   | 2,417,283   | 2,417,283   | 2,417,283   | 144,678   | 146,827        | 151,507                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 2003  | 3,343,009   | 3,343,009   | 3,343,009   | 3,343,009   | 194,887   | 198,098        | 205,022                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 2004  | 4,305,538   | 4,301,237   | 4,301,237   | 4,380,954   | 263,387   | 268,167        | 280,845                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 2005  | 10,450,293  | 10,419,015  | 10,347,944  | 10,477,295  | 594,931   | 607,389        | 652,125                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 2006  | 14,703,562  | 14,598,229  | 14,265,147  | 13,926,305  | 800,542   | 832,008        | 859,923                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 2007  | 26,965,376  | 26,446,624  | 26,914,071  | 26,883,523  | 1,554,709 | 1,568,563      | 1,649,190                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 2008  | 27,885,793  | 27,894,614  | 27,987,319  | 28,965,962  | 1,650,713 | 1,693,468      | 1,832,646                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 2009  | 36,409,273  | 36,695,804  | 36,290,269  | 37,376,519  | 2,187,385 | 2,280,994      | 2,539,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 2010  | 52,978,716  | 51,793,479  | 52,933,577  | 54,313,720  | 3,181,078 | 3,398,056      | 3,790,854                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 2011  | 52,839,590  | 50,713,537  | 53,969,056  | 55,888,999  | 3,169,660 | 3,364,015      | 3,682,382                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 2012  | 52,454,173  | 52,831,730  | 55,810,282  | 54,873,864  | 3,202,132 | 3,362,646      | 3,822,556                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Total | 289,659,072 | 286,361,028 | 293,485,663 | 297,753,902 | 7,618,808 | 8,942,812      | 11,616,966                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |





### **Practical Limitation**

- There is no one method that works in all of the situations. No perfect method!
  - Mack (Late Claim Development)
  - Bootstrapping (Over-skewed Loss Distribution)
  - GLM (Tail Factor & Recent AYs' Trends)
  - Merz Wüthrich (One Year Risk vs. Ultimate Risk)
  - Rehman Klugman (Covariance Calculation)

### **Practical Limitation - Mack**

- Practical Challenges—large latent claim dev
  - Personal Auto Liability
  - 2 large claims happened in the second last dev period

| AY/DY | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1900  | 3,199 | 4,473 | 4,768 | 5,319 | 5,503 | 5,518 | 6,144 | 6,148 | 6,161 | 6,158 | 7,524 | 7,524 |
| 1901  | 3,309 | 4,077 | 4,637 | 4,901 | 4,991 | 5,016 | 5,013 | 6,260 | 6,259 | 6,259 | 6,266 |       |
| 1902  | 3,504 | 4,316 | 5,168 | 5,828 | 6,377 | 6,505 | 6,502 | 6,499 | 6,497 | 6,497 |       |       |
| 1903  | 3,670 | 4,531 | 4,759 | 4,821 | 4,916 | 5,139 | 5,137 | 5,137 | 5,144 |       |       |       |
| 1904  | 3,789 | 4,448 | 4,874 | 5,119 | 5,360 | 5,355 | 5,411 | 5,412 |       |       |       |       |
| 1905  | 3,731 | 5,550 | 6,591 | 6,953 | 7,012 | 7,004 | 7,038 |       |       |       |       |       |
| 1906  | 3,336 | 3,869 | 4,877 | 4,980 | 5,775 | 5,807 |       |       |       |       |       |       |
| 1907  | 2,591 | 3,975 | 5,173 | 5,657 | 5,750 |       |       |       |       |       |       |       |
| 1908  | 2,964 | 3,756 | 4,115 | 4,381 |       |       |       |       |       |       |       |       |
| 1909  | 2,773 | 3,966 | 4,892 |       |       |       |       |       |       |       |       |       |
| 1910  | 3,065 | 4,169 |       |       |       |       |       |       |       |       |       |       |
| 1911  | 3,193 |       |       |       |       |       |       |       |       |       |       |       |

### **Practical Limitation - Mack**

- Practical Challenges—large latent claim dev
  - Low probability of reemergence
  - Mack method recognizes those 2 large claims in loss development factor calculation, which produces huge mean and variance estimation of this line's reserve.
  - Estimated CV of reserve is close to 1

### **Practical Limitation - Mack**

- Practical Challenges—large latent claim dev
  - Solution: GLM is one solution
  - GLM allows actuaries to avoid adding those 2 claims in trends calculation, but still consider them in the total error calculation
  - GLM produces reasonable mean and variance

### **Practical Limitation - Bootstrapping**

- Practical Challenges Over-Skewed Loss Distribution
  - Bootstrapping chain-ladder produces CV close to 10 for the D&O loss triangle below

| AY/DY | 1      | 2      | 3       | 4       | 5       | 6       | 7       | 8      | 9      | 10     | 11     | 12     |
|-------|--------|--------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|
| 1900  | 97     | 4,974  | 13,242  | 9,369   | 9,654   | 18,015  | 17,980  | 16,850 | 16,840 | 16,841 | 16,706 | 16,706 |
| 1901  | 980    | 5,635  | 13,108  | 10,425  | 9,914   | 7,992   | 7,992   | 7,991  | 7,970  | 7,971  | 8,091  |        |
| 1902  | 628    | 22,282 | 29,083  | 39,559  | 45,828  | 48,182  | 60,920  | 60,858 | 60,858 | 62,421 |        |        |
| 1903  | 1,852  | 17,540 | 51,949  | 57,417  | 60,211  | 97,983  | 97,332  | 97,719 | 80,366 |        |        |        |
| 1904  | 10,144 | 28,404 | 30,611  | 38,209  | 63,015  | 59,884  | 59,946  | 56,120 |        |        |        |        |
| 1905  | 6,539  | 47,918 | 74,266  | 77,827  | 125,302 | 123,730 | 137,666 |        |        |        |        |        |
| 1906  | 23,995 | 70,670 | 150,215 | 152,032 | 151,312 | 152,992 |         |        |        |        |        |        |
| 1907  | 8,243  | 51,259 | 70,450  | 89,498  | 106,331 |         |         |        |        |        |        |        |
| 1908  | 16,851 | 52,722 | 86,783  | 100,701 |         |         |         |        |        |        |        |        |
| 1909  | 10,948 | 43,225 | 58,153  |         |         |         |         |        |        |        |        |        |
| 1910  | 11,892 | 46,385 |         |         |         |         |         |        |        |        |        |        |
| 1911  | 5,396  |        |         |         |         |         |         |        |        |        |        |        |

#### **Practical Limitation - GLM**

- Practical Challenges Tail Factor & Recent AYs' Trends
  - Loss triangle is not a standardized data set for regression

| AY/DY | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | - 11  | 12    |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1900  | 1,750 | 2,446 | 2,608 | 2,909 | 3,010 | 3,018 | 3,361 | 3,363 | 3,370 | 3,368 | 3,368 | 3,368 |
| 1901  | 1,810 | 2,230 | 2,537 | 2,681 | 2,730 | 2,744 | 2,742 | 3,424 | 3,424 | 3,424 | 3,428 |       |
| 1902  | 1,917 | 2,361 | 2,827 | 3,188 | 3,488 | 3,558 | 3,557 | 3,555 | 3,554 | 3 554 |       |       |
| 1903  | 2,007 | 2,478 | 2,603 | 2,637 | 2,689 | 2,811 | 2,810 | 2,810 | 2,814 |       |       |       |
| 1904  | 2,073 | 2,433 | 2,666 | 2,800 | 2,932 | 2,929 | 2,960 | 2,961 |       |       |       |       |
| 1905  | 2,041 | 3,036 | 3,605 | 3,803 | 3,836 | 3,831 | 3,850 |       |       |       |       |       |
| 1906  | 1,825 | 2,117 | 2,668 | 2,724 | 3,159 | 3,176 |       |       |       |       |       |       |
| 1907  | 1,417 | 2,174 | 2,830 | 3,094 | 3,145 |       |       |       |       |       |       |       |
| 1908  | 1,621 | 2,054 | 2,251 | 2,397 |       |       |       |       |       |       |       |       |
| 1909  | 1,517 | 2,169 | 2,676 |       |       |       |       |       |       |       |       |       |
| 19 0  | 1,677 | 2,280 |       |       |       |       |       |       |       |       |       |       |
| 1911  | 1 746 |       |       |       |       |       |       |       |       |       |       |       |

### **Practical Limitation - GLM**

- Practical Challenges Tail Factor & Recent AYs' Trends
  - Due to limited data and regression mechanism, late DYs' trends (tail factor) and recent AYs' trends are often not treated as significantly different from previous years
  - With GLM model, actuaries are not easy to insert a different opinion other than what the data says

#### **Practical Limitation - Merz - Wüthrich**

- Practical Challenges One Year Reserve Risk vs. Ultimate Reserve Risk
  - The one year reserve risk from Merz Wüthrich method is often very close to the ultimate reserve risk from Mack method
  - In many cases, one year paid out loss is 30% to 70% of total reserve, but one year reserve risk is more than 90% of ultimate reserve risk

### **Practical Limitation - Merz - Wüthrich**

- Practical Challenges One Year Reserve Risk vs. Ultimate Reserve Risk
  - In the following example, Merz Wüthrich one year CV is about 97% of Mack ultimate CV
  - GLM and bootstrapping are other possible solutions for one year risk

| AY/DY | 1      | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      | 11      | 12      | 13      | 14     |
|-------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|
| 1900  |        |         |         | 16,203  | 16,528  | 16,678  | 16,653  | 16,676  | 16,689  | 16,689  | 16,703  | 16,705  | 16,704  | 16,708 |
| 1901  |        |         | 130,921 | 138,722 | 142,266 | 138,540 | 138,555 | 138,519 | 138,523 | 138,551 | 138,566 | 138,563 | 138,577 |        |
| 1902  |        | 9,573   | 16,670  | 18,300  | 19,739  | 20,304  | 20,719  | 20,668  | 20,675  | 20,675  | 20,724  | 20,741  |         |        |
| 1903  | 511    | 9,288   | 13,701  | 16,677  | 18,498  | 18,926  | 18,934  | 18,937  | 19,608  | 19,761  | 19,761  |         |         |        |
| 1904  | 11,465 | 55,340  | 64,381  | 68,802  | 69,535  | 69,965  | 71,345  | 71,433  | 71,514  | 71,515  |         |         |         |        |
| 1905  | 7,863  | 170,323 | 265,191 | 294,006 | 365,445 | 374,159 | 374,672 | 376,826 | 377,842 |         |         |         |         |        |
| 1906  | 6,878  | 17,911  | 40,803  | 45,503  | 48,134  | 48,638  | 50,045  | 50,119  |         |         |         |         |         |        |
| 1907  | 2,680  | 11,699  | 32,012  | 38,474  | 39,012  | 39,726  | 39,767  |         |         |         |         |         |         |        |
| 1908  | 9,115  | 73,797  | 118,041 | 140,587 | 143,091 | 144,788 |         |         |         |         |         |         |         |        |
| 1909  | 2,353  | 12,286  | 23,437  | 28,123  | 30,502  |         |         |         |         |         |         |         |         |        |
| 1910  | 26,596 | 52,333  | 62,343  | 69,859  |         |         |         |         |         |         |         |         |         |        |
| 1911  | 28,704 | 63,937  | 84,689  |         |         |         |         |         |         |         |         |         |         |        |
| 1912  | 3,919  | 19,656  |         |         |         |         |         |         |         |         |         |         |         |        |
| 1913  | 10,031 |         |         |         |         |         |         |         |         |         |         |         |         |        |

#### **Practical Limitation - Rehman - Klugman**

- Practical Challenges Covariance Calculation
  - One step of Rehman Klugman method is to calculate covariance matrix by DY
  - However, loss triangle is not a standard data set to calculate covariance matrix

| AY/DY | 1      | 2      | 3      | 4      | 5      |
|-------|--------|--------|--------|--------|--------|
| 1900  | 53,812 | 53,807 | 53,807 | 53,881 | 53,981 |
| 1901  | 49,031 | 49,031 | 49,031 | 49,031 |        |
| 1902  | 71,691 | 71,187 | 71,187 |        |        |
| 1903  | 71,858 | 70,853 |        |        |        |
| 1904  | 57,980 |        |        |        |        |

#### Practical Limitation - Rehman - Klugman

- Practical Challenges Covariance Calculation
  - The inconsistency in covariance calculation may result in negative variance
  - The loss triangle below produces negative variance for AY 1908 cumulative LDF

| AY/DY | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     |
|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1900  |        | 55,153 | 55,305 | 53,948 | 53,185 | 52,472 | 52,817 | 53,812 | 53,807 | 53,807 | 53,881 | 53,981 |
| 1901  | 57,018 | 56,217 | 48,828 | 49,970 | 49,939 | 48,913 | 49,021 | 49,031 | 49,031 | 49,031 | 49,031 |        |
| 1902  | 66,255 | 61,413 | 63,238 | 74,397 | 69,387 | 69,453 | 69,632 | 71,691 | 71,187 | 71,187 |        |        |
| 1903  | 65,956 | 68,998 | 69,519 | 71,261 | 71,722 | 76,211 | 77,237 | 71,858 | 70,853 |        |        |        |
| 1904  | 62,982 | 63,193 | 61,404 | 60,315 | 59,416 | 58,467 | 57,251 | 57,980 |        |        |        |        |
| 1905  | 69,217 | 71,556 | 70,593 | 69,314 | 69,570 | 68,985 | 68,753 |        |        |        |        |        |
| 1906  | 61,734 | 60,609 | 59,760 | 59,444 | 59,162 | 59,223 |        |        |        |        |        |        |
| 1907  | 38,768 | 39,588 | 38,564 | 35,611 | 33,739 |        |        |        |        |        |        |        |
| 1908  | 46,858 | 48,348 | 51,103 | 51,212 |        |        |        |        |        |        |        |        |
| 1909  | 30,177 | 31,790 | 30,434 |        |        |        |        |        |        |        |        |        |
| 1910  | 33,699 | 33,679 |        |        |        |        |        |        |        |        |        |        |
| 1911  | 48,675 |        |        |        |        |        |        |        |        |        |        |        |

### **Applications of Stochastic Reserving**

- Reserve Adequacy Assessment
  - Required in some countries' statutory report
- Reserve Risk for Capital Modeling
  - Reserve risk accounts for a significant portion of overall insurance risk
- Loss Reserve Margins
  - 75% level required in some countries like Australia and Malaysia
- Estimate of One-Year change in loss reserves
- Risk Aggregation
  - Unsolved problem: correlation of reserve risk

### **Correlation of Reserve Risk**

- Causes of Correlation of Reserve Risk
  - Inflation Risk
  - Claim Management Change
  - Legislative Risk
  - Clash Risk
  - Reserving Cycle
  - More...

- In most of the capital models, reserve risk correlation is determined by expert opinion
  - None (e.g. ρ=0%)
  - Low (e.g. ρ=25%)
  - Medium (e.g. ρ=50%)
  - High (e.g.  $\rho$ =75%)

- How to quantify reserve risk correlation from loss data?
  - Historical Booked Reserve Change
  - Paid/Incurred Loss Triangle

- Historical Booked Reserve Change
  - Booked Reserve Change = (Booked Reserve Paid Loss in next 12 months – Remaining Reserve after 12 months)/ Booked Reserve
  - Easy to calculate
  - Require 10+ years experience
  - Cannot reflect business nature/claim management change promptly

- Paid/Incurred Loss Triangle
  - Reserving Model Residuals Correlation
    - Loss Triangle A + **E**1vs. Loss Triangle A + **E**2;
    - Assume that there is a reserving model X can model A with zero residuals
  - GLM Model Trends Correlation
    - How to combine AY/DY/CY trends correlations?
    - Same loss triangles & different model settings may result in significantly different correlations
  - Implied Reserve Risk Correlation
    - Model loss triangle A, B and A + B
    - May not be suitable for different LOBs

#### **Disclaimer**

The data and analysis provided by Guy Carpenter herein or in connection herewith are provided "as is", without warranty of any kind whether express or implied. The analysis is based upon data provided by the company or obtained from external sources, the accuracy of which has not been independently verified by Guy Carpenter. Neither Guy Carpenter, its affiliates nor their officers, directors, agents, modelers, or subcontractors (collectively, "Providers") guarantee or warrant the correctness, completeness, currentness, merchantability, or fitness for a particular purpose of such data and analysis. The data and analysis is intended to be used solely for the purpose of the company internal evaluation and the company shall not disclose the analysis to any third party, except its reinsurers, auditors, rating agencies and regulators, without Guy Carpenter's prior written consent. In the event that the company discloses the data and analysis or any portion thereof, to any permissible third party, the company shall adopt the data and analysis as its own. In no event will any Provider be liable for loss of profits or any other indirect, special, incidental and/or consequential damage of any kind howsoever incurred or designated, arising from any use of the data and analysis provided herein or in connection herewith.

'Statements or analysis concerning or incorporating tax, accounting or legal matters should be understood to be general observations or applications based solely on our experience as reinsurance brokers and risk consultants and may not be relied upon as tax, accounting or legal advice, which we are not authorized to provide. All such matters should be reviewed with the client's own qualified advisors in these areas.

