

Presentation on Catastrophe Modeling: Buckeye Actuarial Continuing Education

Columbus OH April 10, 2012

George G. Freimarck 201-315-8502 <u>gfreimarck@eqecat.com</u>

Setting Rational Expectations About Risk

Agenda

- EQECAT: Cat Model Stewardship
- Cat Model Overview
 - Hurricane
 - Earthquake
 - Tornado Hail
- Methodology
- **ROE**[™]

A Brief History of EQECAT

Cat Model Stewardship

- Responsible implementation
 - timely updates and releases
 - empirical/claims based loss modeling
 - manage model change
- State of the Art Tools
 - transparent results
- *Client's* ownership of process
 - understand model and own results

Cat Modeling: Why it matters

- Enterprise Risk Management
- What decisions do we make?
 - Risk of ruin
 - Pricing
 - Capital decisions
 - Communicating risk to stake holders
 - Reinsurance purchasing decisions
 - Setting expectations about risk

Modeling Methodology

Hazard Definition

Hurricane

Storm Tracks

Earthquake

Magnitudes

≻Frequencies

- Hurricane
 ≻Surface Wind Speed
 - Local Wind Gust
- Earthquake
 - ➤Attenuation functions
 - ≻Soil Maps

 Vulnerability functions

≻Occupancy

- ➤Building age
- ➢Number of stories
- ➤Construction material

Estimation of Loss

• Loss calculation
 ≻Ground-up Loss

>Apply financial terms

Validated with historical loss data

North Atlantic Hurricane

2004 – 2011: Major updates to EOECAT's North Atlantic Hurricane Model

- ✓ Original Release 1995
- **EQECAT** is a pioneer in creating basin wide, correlated models: released first in 2003
- Certified by the FCHLPM annually, since the inception of the certification process in 1997

Hurricane Ike was not a surprise

- EQECAT's robust stochastic storm set had events similar to hurricane lke
 - EQECAT's insured loss estimate on Sept 13, 2008: \$8 B to \$18 B
 - Revised insured loss estimate on Sept 18, 2008: \$8 B to \$12 B
 - EQECAT's model loss estimate: \$10 B (Texas & Louisiana)
 - PCS industry loss estimate (including losses in the Midwest): \$12.5 B

EQECAT 2004 Windfield

Ground up loss in WORLDCATenterprise[™] version 3.6

All US, Industry Loss Cost, v3.15

Released 2009

All US, Industry Loss Cost, v3.16 Released 2011

AN ABS GROUP COMPANY

Comparing Exceedance Probability for different Wce Versions

V 3.7 (2005) to V 3.15 (2010)

- Overall percent change in OEP between versions :
 - 100 year return period is from10% to -20%
 - 250 year return period is from17% to -22%
 - 500 year return period is from 22% to -26%
- Overall percent change in AEP between versions :
 - 100 year return period is from 13% to -17%
 - 250 year return period is from17% to -19%
 - 500 year return period is from 21% to -18%

NA HU: Additional Components

- Demand Surge, or Post-Catastrophe Inflation
- Alterative Frequency and Severity assumption
 - Long term is based on HURDAT
 - Near term is based upon a warm Atlantic Multi-decadal Oscillation (AMO) time series

• Storm Surge and Flooding

- Calculates results for wind only, or wind plus hurricane flooding
- Hurricane Flooding damage estimation is done via a detailed storm surge analysis, and an analysis of the incremental damages due to rainfall and associated flooding
- Landfall Series Report
 - Provides a deterministic snap shot of expected loss (by storm intensity) for 310 gates

PCS estimates are adjusted to 2008 dollars, reflecting inflation but not exposure increase

EQECAT: US Quake Components

Fault Parameters

- 3-D geometry (length, width, and dip)
- Type and depth of faulting
- Minimum, maximum & characteristic magnitudes
- Recurrence rate or geologic slip rate
- Time-dependent probability

Innovations: Soil-Based Attenuation

- Captures the exposure
 - more people are located on soil
- Models are better constrained
 - more recordings are located on soil

- Smaller amplification factors (1.0 vs. 2.0)
 - Less uncertainty in losses
- Modest changes for future releases

New Results by Region: Market Portfolio

Ratio between losses from new model and WCe 3.13, for the market portfolio. Return periods range from 100 to 1000 years.

Principled Science: Rigorous Peer-Review

- Modeler for California EQ Authority
 - Requires "state of art" certification thru peer review
- Hazard Model: Reviewed by USGS scientists
 - including Dr. Ned Field, primary author of UCERF
- Vulnerability and damage modules reviewed by PEER

Severe Convective Storms in the US

Modeling Severe Convective Storm

- 2011 was a record year for SCS insured losses
- Aggregate losses exceeded \$20 Billion
 - 6 events had losses > \$1 Billion (2 were \$5+ B)
 - 1990-2010 annual average loss (US \$5.11 billion)¹
 - 551 deaths attributed to Tornado (3rd highest since 1925)²
- The losses of 2011 are part of a trend

Damage Classification

100 mph

150 mph

170 mph

220 mph

300 mph

Modeling SCS

Tornado Event Weather Systems

Source: NOAA/NWS

Severe Convective Storms

Trends

US Tornado Deaths/Million People

250 **Localization (M)** 2225 2000 1775 150 1970 1975 1980 1985 1990 1995 2000 2005 2010 Year

More targets (population in Tornado states)

better warning system

Bigger targets (house size)

http://www.munichre.com/app_pages/www/@res/pdf/media_relations/press_releases/ 2012/2012_01_04_munich_re_natural-catastrophes-2011_en.pdf?2

More losses

Tornado Frequency

•Adjusted trend based on better observation technology (Doppler Radar)

•Exposure growth leads to more observation

Increased perception of Tornado risk

Tornadoes per year adjusted to baseline (2007)

Robust Modeling for Tornado

- Proper calculation of insured loss requires modeling small events
- Tornado damage footprints do not look like those from other perils (EQ, Hurricane)
- Loss estimation (net of deductibles, limits) is very sensitive to how damage is modeled
- Creating event footprints that look like real events is very important

Modeling SCS

- 800,000 + events
- Tornado: 1x10 kilometer grid
 - Not uniformly distributed within the grid
 - Varies to look like a tornado
- Individual tornado touchdowns are one or more grid (some real tornado touchdowns are 100 kilometers or more, we want ours to look real)
- Event is comprised of one or more touchdowns, with hundreds of touchdowns very possible (an event can stretch up to 5 days)
- Hail grids are 3 km by 3 km. Damage varies within a grid
- Hail occurrences are a part of the overall "SCS" event which includes tornadoes and straight winds

Claims Data and PCS Industry Data

- Model Validation:
 - Overall PCS Industry Loss
 - Expected annual loss
 - High frequency (<15 years) portion of the exceedance curve
 - 20+ years of claims data from 3 major insurers
 - Portfolio specific expected annual loss
 - Regional (State) Expected annual loss
 - High frequency (<15 years) portion of the exceedance curve

2011 – What happened

	2011	Maximum Observed
Tornado Days	179	211 (2000)
Tornadoes	1700	1817 (2004)
Most in single day	200 (27 Apr)	Was 128 (1974)
Fatalities	551 (3 rd)	~700 (1925)
Longest Track	132 miles(AL- TN)	235 miles (LA-MS, 1953)
# EF4-EF5	22 (4 th)	36 (1974)
# EF5	6 (2 nd)	7 (1974)

2011:

- Aggregate Loss exceeded \$20 Billion
- 6 events had losses > \$1 Billion (2 were \$5+ B)

AN ABS GROUP COMPANY

http://www.spc.noaa.gov/wcm/2011-jan-oct_sm.png

"Modeled Market" Loss Curves

2011 was an exceptional year, with several very large events

Methodology

Treatment of Uncertainty and

The Importance of Correlation

Understanding and Modeling of Uncertainty: Sources of Uncertainty

ge

- Catastrophe modeling is all about uncertainty:
 - Uncertainty in Time (frequency of occurrence)
 - Uncertainty in Space (location of event)
 - Uncertainty in event Intensity (magnitude, SSI, ...)
 - Uncertainty in Spatial Distribution of hazard (soil failure in EQ, tornadoes in hurricanes)

Shaking intensity (I)

Why Correlation is important

- Extreme events
- The "tail of the curve" is where correlation has a large impact
- Correlation not accounted for can result in unpleasant surprises
 - Like hazard and vulnerability, correlation modeling affects model performance
 - Overestimation and underestimation both problematic

First Generation Correlation Modeling (1G)

- Assume a reasonable but simple rule for correlation (i.e. 80/20)
- But ignores wealth of empirical data we have on this problem
- Provides a transparent means for adding portfolios (aggregation of risks)
- Calculation methods straight-forward
- Tail results will be highly influenced by the rule chosen

but not robust....

Second Generation Correlation Modeling (2G)

- Allow for model differing correlations between different components of the loss distribution calculation:
 - Occupancy
 - Location
 - Structural Characteristics
- Base characterization of correlation on study of loss data (empirical –varies by peril and region)
- Apply differing correlation relationships to different aspects of the loss calculation

EOECAT's Stochastic Risk Atlas (SRA) -Product of 2G-

- 150,000 years' simulation
 - 300,000 in October 2012
- Loss calculations with full uncertainty
 - All uncertainty is Primary, never Secondary
 - OEP, AEP
- Correlation of Events and Years
- Clustering
- Time Dependency

Event Loss Table (ELT)

- Every event in the stochastic set contains
 - Event characteristics (location, intensity)
 - Annual Frequency

• Risk Analysis produces an Event Loss Table with a characterization of the loss at every event

Event ID	Milepost	SSI	Latitude	Longitude	Max Wind	Rmax	Trans Speed	Min bp	Direction	Frequency	Loss Mean	Loss Std
1	36	1	24.22	-97.87	88	29	22	984	SW	5.23E-05	11.21	22.41
2	34	1	24.18	-97.88	84	23	14	986	W	5.32E-05	2.70	5.41
3	34	1	24.18	-97.88	82	46	27	989	W	8.15E-05	2.50	5.01
4	38	2	24.26	-97.86	100	75	18	970	WNW	5.32E-05	132.48	81.02
5	31	3	24.12	-97.895	120	24	12	955	WSW	5.32E-05	554.35	371.75
6	34	2	24.18	-97.88	98	39	20	975	W	8.15E-05	58.74	35.32
7	36	4	24.11	-97.87	140	30	16	930	WNW	5.32E-05	5149.32	6765.71

 Loss statistics (Average Annual Loss, exceedance probabilities) are produced from ELT

Second Generation Correlation Modeling (2G)

- Provides more robust modeling of phenomena
- Represents complex distributions more precisely
- Complexity and directionality of calculations precludes aggregation / disaggregation outside of the model

but not easy...

Third Generation Correlation Modeling (3G)

- Will employ the robustness of 2G approach
- And the ease of use of 1G approach

Setting rational expectations about risk

Year Loss Table (YLT) -Product of 3G-

- Natural Catastrophes can occur multiple times in a year
- Robust modeling for risk analysis requires the translation of event frequencies into loss probabilities
 Sim Yr Peril Model Event ID DOY Loss 1 US EQ 1 194 12.8
- Robust Modeling requires inclusion of natural and modeling uncertainty in model results, especially intra-event correlation
 US HU
 US HU

181.4

7732.1

133.3

3.0

Introducing: ROETM (Risk Quantification & Engineering)

ROETM: The Future of Cat Modeling

October 2012:

- Robust Treatment of Uncertainty
- Four Principal Report Types
- Diverse Reporting Levels and Perspectives
- Comprehensive Portfolio Aggregation Tool
- Comprehensive Data Import
- Easy Workflow Integration
- Interactive Exposure Management
- Extensive Global Coverage

Summary

- Cat Models critical to ERM
 - Quantifying Risk
 - Cat Model Stewardship
- Hurricane
 - Consistent update, model change management
- Earthquake
 - Innovations and model change management
- Convective Storm
 - Unlike big HU, EQ events
 - 2011 exceptional, but not extraordinary
- Uncertainty and Correlation
 - Importance capture range
 - 1G, 2G
 - 3G: Robust, Portable
- **RQE**[™]
 - The Future of Cat Modeling

Presentation on Catastrophe Modeling: Buckeye Actuarial Continuing Education

ROE[™] Release Events:

Toronto, Chicago, Minneapolis, New York June-July 2012

Register: www.eqecat.com

Thank You!

Notable Losses (if they occurred today ...)

- Historic Hurricane
 - 1926 Cat 4, Broward \$70 Billion insured+
 - 1947 Cat 4, Palm Beach \$60+ Billion
 - 1900 Cat 4, Houston \$55+ Billion
 - 1915 Cat 4, Houston \$50+ Billion
- Historic Earthquake
 - 1811-1812 sequence, New Madrid
 - \$110+ Billion
 - 1906 San Francisco \$50+ Billion

