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Objective and Motivation 

 Our objective is to estimate the Solvency Capital Requirement and the Risk Margin as prescribed in 

the Solvency II regulation for a non-life (re)insurance portfolio. 

 

 The most common method used in practice for the SCR estimation is the Merz-Wüthrich formula. 

 The hypothesis behind the MW formula are often violated. 

 MW formula does not actually provide estimations for the SCR and the Risk Margin! 

 The MW formula is not robust if used outside its applicability perimeter                        

(Dacorogna - Ferriero - Krief, “Taking the one-year change from another angle”, 2014, preprint). 

 

 

Section 1 | Section 2 | Section 3 | Section 4 
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SCR and Risk Margin definition 

 The SCR is the capital required to cover the risk of a large increase of the technical provision from 
one year to the other.  

 The SCR for a non-life insurance portfolio, as defined in the Solvency II, is  

 

SCR0 = 𝐕𝐚𝐑99.5%(TP1 − TP0) 

 

where TP𝑛 = BE𝑛 + RM𝑛 is the Technical Provision at year 𝑛, i.e. the Best Estimate of the 
ultimate loss plus the Risk Margin. 

  

 The Risk Margin for the insurance liabilities quantifies their market value. It can be seen as the 
remuneration for the capital needed during the run-off of the portfolio.     

 The Risk Margin is defined by 

RM𝑛 = CoC  
𝐄 SCR𝑘  F𝑛)

(1 + 𝑟𝑛,𝑘−𝑛+1)
𝑘−𝑛+1

𝑚−1

𝑘=𝑛

 

 

where the Cost of Capital is assumed to be constant CoC = 6% and the run-off lasts 𝑚 years.   

 The SCR𝑛 at year 𝑛 ≥ 1 is the random variable SCR𝑛 = 𝐕𝐚𝐑99.5% TP𝑛+1 − TP𝑛  F𝑛), where F𝑛 is 
the available information at year 𝑛. 

Section 1 | Section 2 | Section 3 | Section 4 
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The Ideas behind our Model 

 Let 𝑌1 be the ultimate attritional loss of a run-off portfolio. We want to model the dynamics which 

brings the losses, and thus the corresponding best estimates of the ultimate loss, from t = 0 to t = 1. 

 

 

 

 

 

 At time 𝑡 > 0 the realized losses 𝑌𝑠, 𝑠 ≤ 𝑡, determine the estimation of BE𝑡. 

 For example, we may project 𝑌𝑡 to BE𝑡 with the chain-ladder method. 

 

 However, in reality we trust our estimations when things behave normally but we know that 

exceptionally things may happen which make our estimations wrong. 

 If 𝑌𝑠, 𝑠 ≤ 𝑡, oscillate up and down around what we expected, then we are confident with our 

estimations and may even make occasional prudent reserves release. 

 If 𝑌𝑠, 𝑠 ≤ 𝑡, are systematically above expectation over a certain period of time 𝑇𝑠, 𝑇𝑒 , then we 

may distrust our estimations and thus make a material correction. 

 This change of regime marks the reserving cycle.  
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Our Model – The Losses over Time 

 We assume that 𝑌1 has Log-Normal distribution.  

 This is appropriate because 𝑌1 is the attritional losses component. 

 

 In order to model the two regimes of the reserving cycle we assume that the relative loss 

developments 𝑑𝑌𝑡 𝑌𝑡  have uncertainties around what expected which are: 

 uncorrelated and have normal distribution on 0,1  \ 𝑇𝑠, 𝑇𝑒 , like in a Brownian motion, 

 positively correlated and have normal distribution on 𝑇𝑠, 𝑇𝑒 , like in a fractional Brownian 

motion with dependency exponent ℎ between 0.5 and 1. 

 

 In mathematical terms, 

 𝑑𝑌𝑡 𝑌𝑡 = 𝑝𝑡𝑑𝑡 + 𝑑𝐵𝑡 (𝑇
𝑠, 𝑇𝑒),   𝑡 ∈ [0,1], 

  

with initial loss 𝑌0 > 0, where 𝑝𝑡𝑑𝑡 is what expected and 𝑑𝐵𝑡 (𝑇
𝑠, 𝑇𝑒) is the uncertainty. 

 The variance of the relative loss developments is assumed to be proportional to the expected 

incremental loss. 

 

 The time 𝑇𝑒 is when a sudden material reserves increase may occur as a result of a period 𝑇𝑠, 𝑇𝑒  

of systematic under-estimation of the losses. 
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Our Model – The Losses over Time 

𝑑𝑌𝑡 𝑌𝑡 = 𝑝𝑡𝑑𝑡 + 𝑑𝐵𝑡 (𝑇
𝑠, 𝑇𝑒) 
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Our Model – The Best Estimate of the Ultimate Loss over Time 

 If 𝛾 is the relative size of a reserves jump, then we model the evolution of the best estimate of the 
ultimate loss over time by the stochastic differential equation 

 

 

 

with initial value BE0 = 𝐄(𝑌1), where:  

 𝐹𝑡 is the available information at time 𝑡, 

 𝑑𝐽𝑡(𝑇
𝑒) is approximately always null but in 𝑇𝑒 where 𝑑𝐽𝑇𝑒 𝑇

𝑒  may be 1,  if a reserve 
strengthening occurs, otherwise is 0.  

 

 A plausible reserving actuary criteria 𝑓𝛼 triggering the reserve strengthening could be that, if the 
realized losses during 𝑇𝑠, 𝑇𝑒  exceed what expected by 𝜉𝛼-times the standard deviation, then the 
best estimate is increased by γ(BE𝑇𝑒 − 𝑌𝑇𝑒).  

 Any such a criteria has an associated probability of occurrence 𝛼. 

 

 {BE𝑡} is a martingale, as it should be, i.e. 𝐄 BE𝑡 𝐹𝑠) = BE𝑠, for 𝑠 ≤ 𝑡. 

 

 The model is formulated in terms of stochastic differential equations. However it can be equivalently 
formulated in a simpler way which does not make use of stochastic differential equations. 
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Our Model – The Best Estimate of the Ultimate Loss over Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In the figure, 𝑌0 = 50, BE0 = 100, 𝜎0 ≔ Std 𝑌1 BE0 = 3%  and  𝛾 = 18%, 𝛼 = 0.05, 𝑚 = 10. 
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Our Model - Comments 

 The quantity BE𝑡 − 𝑌𝑡, which represents the reserves, tends to decrease over time, hence the 

reserves jump size γ(BE𝑡 − 𝑌𝑡) decreases too. 

 

 As in reality we do not know a priori but only a posteriori if the loss developments have started to be 

dependent, 𝑇𝑠 is not part of the available information 𝐹𝑡. 

 

 The best estimate evolution is composed by two parts, a smooth part and a jump part. 

 

 

 

 

 Summarizing, our model describes a reserving cycle.  

 𝐵𝑡 (𝑇
𝑠, 𝑇𝑒) captures the first phase of the cycle in which a systematic under-estimation of the 

losses may occur. 

 𝐽𝑡 𝑇
𝑒  captures the second phase of the cycle in which a sudden material deterioration of the 

reserves occurs as a result of the preceding systematic under-estimation.  
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SCR and Risk Margin simplifications 

 TP𝑛+1 − TP𝑛 is replaced by BE𝑛+1 − BE𝑛, which is justified by the fact that the Risk Margin is 

approximately constant from one year to the other. 

 

 𝐕𝐚𝐑99.5% is replaced by 𝐭𝐕𝐚𝐑99% because 𝐕𝐚𝐑99.5% is not robust and not coherent. 

 

 𝐄[𝐭𝐕𝐚𝐑99% BE𝑛+1 − BE𝑛 F𝑛)] is replaced by 𝐭𝐕𝐚𝐑99% BE𝑛+1 − BE𝑛 F0) in the Risk Margin at 𝑡 = 0 
because the first quantity is cumbersome.  

 The Risk Margin is a second order quantity with respect to the SCR, and however the proposed 

simplification is more prudent since 𝐭𝐕𝐚𝐑99% BE𝑛+1 − BE𝑛 F0) ≥ 𝐄[𝐭𝐕𝐚𝐑99% BE𝑛+1 − BE𝑛 F𝑛)]. 

 

RM0 = CoC  
𝐄 SCR𝑘  F0)

(1 + 𝑟0,𝑘+1)
𝑘+1
≲

𝑚−1

𝑘=0

CoC  
𝐭𝐕𝐚𝐑99% BE𝑘+1 − BE𝑘 F0)

(1 + 𝑟0,𝑘+1)
𝑘+1

𝑚−1

𝑘=0

 

 

 

 

 

 

Section 1 | Section 2 | Section 3 | Section 4 



14 

SCR and Risk Margin approximation 

 Our model has three parameters: the reserves jump size 𝛾, the reserves jump probability 𝛼, the loss 

developments dependency exponent ℎ. 

 The volatility parameter of the ultimate attritional loss is 𝜎0. 

 

 If 𝛾𝛼, 𝜎0 are small, then it can be showed that 

 

 

 

 

 Our model is formulated with continuous-time but it can be easily discretized.  

 

 Suppose that 𝛼 and 𝛾 are such that 𝛼 𝑚 < 1% and γ BE0 − 𝑌0 ≥ 𝐭𝐕𝐚𝐑99.5%−|𝛼 𝑚 −0.5%|[𝑌𝑚 − 𝐄 𝑌𝑚 ] 

and γ BE0 − 𝑌0 ≤ 𝐭𝐕𝐚𝐑99.5%+|𝛼 𝑚 −0.5%|[𝑌𝑚 − 𝐄 𝑌𝑚 ]. We can then show that, with 𝜆: = 𝛼/(𝑚1%) and 

𝑐𝑛: = (𝑒
𝑝𝑛 − 1)/(𝑒𝑝𝑚 − 1),  
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Our Model in practice 

 To use our in model in practice we need the following inputs: 

 the ultimate loss model BEm, which could either include or not the large loss component, 

 the cumulative calendar year expected loss pattern (𝑐1, … , 𝑐𝑚). 

 

 The parameters of the model: 

 the reserves jump size 𝛾; if the ultimate model includes the large losses component, then we 

can approximate 𝛾 by 𝐭𝐕𝐚𝐑99%(BE𝑚 − BE0)/(BE0 − 𝑌0), otherwise 𝛾 can be quantified by 

experts and its value should be around 𝐭𝐕𝐚𝐑99.5% 𝑌𝑚 − 𝐄 𝑌𝑚 /(BE0 − 𝑌0), 

 the reserves jump probability 𝛼, 

 the loss developments dependency exponent ℎ. 

 

SCR0 = 𝑐1
ℎ 1 − 𝜆 + 𝜆 𝛾(BE0 − 𝑌0) 

 

RM0 = 6%
𝑐1
ℎ 1 − 𝜆 + 𝜆

1 + 𝑟0,1
+  

𝑐𝑛+1 − 𝑐𝑛
ℎ 1 − 𝜆 + (1 − 𝑐𝑛)𝜆

(1 + 𝑟0,𝑛+1)
𝑛+1

𝑚−1

𝑛=1

𝛾(BE0 − 𝑌0) 
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Conclusion 

 Behind our SCR and Risk Margin formulas we have the following assumptions: 

 𝛾𝛼, 𝜎0 small and γ around 𝐭𝐕𝐚𝐑99.5% 𝑌𝑚 − 𝐄 𝑌𝑚 / BE0 − 𝑌0 , 

 losses and the best estimates behave as described in the model. 

 

 Our model addresses known limitations of the MW method: 

 captures the dependency between loss developments, 

 captures the reserving actuary behavior and the reserving cycle, 

 provides estimates for the SCR and the Risk Margin as opposed to the mean square error. 

 

Section 1 | Section 2 | Section 3 | Section 4 
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Conclusion 

 Our method ensures consistency between ultimate and one-year risk. 

 The better understood ultimate risk can be maintained throughout the entire model. 

 The availability of consistent ultimate and one-year risk estimations enhances the potential use 

cases (solvency, pricing, capital allocation, planning and retro optimization, …). 

 

 Our method has the practical advantage to be used for portfolios with limited credibility. 

 Given the ultimate attritional loss model and parameters 𝛾, 𝛼 and ℎ, the SCR and Risk Margin 

can be estimated with our methodology. 

 However, while the calibration of the parameters 𝛾, 𝛼 can be elicited through expert judgment, 

the parameter ℎ, i.e. the dependency between loss developments, would require credible data. 

It is noted though that such calibration can be benchmarked using data from similar portfolios.  

Section 1 | Section 2 | Section 3 | Section 4 
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Disclaimer 

 Any views and opinions expressed in this presentation or any material distributed in conjunction with 

it solely reflect the views of the author and nothing herein is intended to, or should be deemed, to 

reflect the views or opinions of the employer of the presenter. 

 

 The information, statements, opinions, documents or any other material which is made available to 

you during this presentation are without any warranty, express or implied, including, but not limited 

to, warranties of correctness, of completeness, of fitness for any particular purpose. 
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Our Model – The Losses over Time 

 We assume that 𝑌1 has Log-Normal distribution.  

 This is appropriate because 𝑌1 is the attritional losses component. 

 

 We define the continuous-time dynamics which brings the losses from t = 0 to t = 1 with the 

stochastic process given by 

 

 

with initial loss 𝑌0 > 0, where 

 𝑝𝑡 is the expected loss development, which is an increasing concave function with 𝑝0 = 0,   

 𝐵𝑡 (𝑇
𝑠, 𝑇𝑒) is the uncertainty around 𝑝𝑡, which is a Brownian motion on 0,1  \ 𝑇𝑠, 𝑇𝑒  and a 

fractional Brownian motion on 𝑇𝑠, 𝑇𝑒  with dependency exponent ℎ between 0.5 and 1, with 

mean such that 𝐄 𝑌𝑡 = 𝑌0𝑒
𝑝𝑡  and variance proportional to the expected outstanding loss. 

 

 The random time 𝑇𝑒 is when a sudden material reserves increase may occur as a result of a period 

𝑇𝑠, 𝑇𝑒  of systematic under-estimation of the losses. 

 𝑇𝑒 is uniformly distributed on 0,1 , and 𝑇𝑠 is a r.v. on [𝑇𝑒 − 1, 𝑇𝑒] with exponential distribution, 

i.e. 𝐏 𝑇𝑠 ≤ 𝑡 = 𝑎𝑡−𝑇
𝑒
, 𝑎 > 1, so that times close to 𝑇𝑒 are more probable. 
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Our Model – The Best Estimate of the Ultimate Loss over Time 

 If 𝛾 is the relative size of a reserves jump, then we model the evolution of the best estimate of the 

ultimate loss over time by the Itô stochastic differential equation 

 

 

with initial value BE0 = 𝐄(𝑌1), where 𝐹𝑡 is the 𝜎-algebra generated by {𝑌𝑠|𝑠 ≤ 𝑡} and {𝑇𝑒 ≤ 𝑠|𝑠 ≤ 𝑡}, 

 

 

 

with reserving actuary criteria 

 

 

 

 

𝑇 𝑠 = [𝑇𝑠]+, 𝜉𝛼 ≥ 0 is such that 𝐏 𝑓𝛼 𝑇
𝑒 = 1 𝑇𝑒 = 1 = 𝛼, and 

 

 The reserving actuary criteria means that, if the realized losses during 𝑇𝑠, 𝑇𝑒  exceed what expected 

by 𝜉𝛼-times the standard deviation, then the best estimate is increased by γ(BE𝑇𝑒 − 𝑌𝑇𝑒).  
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Our Model - Comments  

 The model is formulated in terms of Itô’s stochastic differential equation. However it can be 

equivalently formulated by the following simpler relation 

 

 

 

 

where 

 

 Note that BE1 differs from 𝑌1. The reason being that 𝑌t represents the attritional losses only, whereas 

BEt contains also the large losses behind the reserves jump. 

 

 Summarizing, our model describes a reserving cycle.  

 𝐵𝑡 (𝑇
𝑠, 𝑇𝑒) captures the first phase of the cycle in which a systematic under-estimation of the 

losses may occur. 

 𝐽𝑡 𝑇
𝑒  captures the second phase of the cycle in which a sudden material deterioration of the 

reserves occurs as a result of the preceding systematic under-estimation.  
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Model Parameters 

 Our model has three parameters for the ultimate-to-one-year relation: 

 the reserves jump size 𝛾, 

 the reserves jump probability 𝛼, 

 the loss developments dependency exponent ℎ. 

 

 The volatility parameter of the ultimate attritional loss is 𝜎0. 

 

 If 𝛾𝛼, 𝜎0 are small, then the model is approximately equal to  

 

 

 

Indeed, 𝐴𝑡 is small if 𝛾𝛼 is small, and 𝐄 𝑌1 F𝑡) − 𝐄 𝑌1 F𝑇𝑒) is small if 𝜎0 is small. 
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SCR and Risk Margin approximation 

 Our model is formulated with continuous-time but it can be easily discretized. We only need to 

restrict 𝑇𝑠, 𝑇𝑒 to assume values on a discrete subset of equidistant points in 0,1 . 

 

 If 𝛾𝛼, 𝜎0 are small, then  

 

 

 

 Suppose that 𝛼 and 𝛾 are such that 𝛼 𝑚 < 1% and γ BE0 − 𝑌0 ≥ 𝐭𝐕𝐚𝐑99.5%−|𝛼 𝑚 −0.5%|[𝑌𝑚 − 𝐄 𝑌𝑚 ] 

and γ BE0 − 𝑌0 ≤ 𝐭𝐕𝐚𝐑99.5%+|𝛼 𝑚 −0.5%|[𝑌𝑚 − 𝐄 𝑌𝑚 ]. Then, with 𝜆: = 𝛼/(𝑚1%),         

 

 

 

 

and 
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SCR and Risk Margin approximation 

 In addition, with 𝑐𝑛: = (𝑒
𝑝𝑛 − 1)/(𝑒𝑝𝑚 − 1), 

 

 

Indeed a fBM 𝐵𝑡 with dependency exponent ℎ is such that 𝐵𝑐𝑡 ~ 𝑐
ℎ𝐵𝑡, for any 𝑐 > 0. 

 

 We therefore obtain 
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