The HCL method: A loss reserving method with

 weighted data- and expert-reliancePhilipp Arbenz
joint work with Robert Salzmann

ETH Zurich
SCOR Reinsurance
www.RiskLab.ch/hclmethod

Outline

Notation

Problem setting

The hybrid chain ladder method

Parameter estimation and model selection

Claims prediction, MSEP, CDR, uncertainty in the μ_{i}

Notation

- $C_{i, j}$: Cumulative claims (i accident year, j development year)

Notation

- $C_{i, j}$: Cumulative claims (i accident year, j development year)
- μ_{i} : initial estimate of ultimate claim

Notation

- $C_{i, j}$: Cumulative claims (i accident year, j development year)
- μ_{i} : initial estimate of ultimate claim
- γ_{j} : percentage of expected incremental claims (w.r.t. ultimate)

Notation

- $C_{i, j}$: Cumulative claims (i accident year, j development year)
- μ_{i} : initial estimate of ultimate claim
- γ_{j} : percentage of expected incremental claims (w.r.t. ultimate)
- $\beta_{j}=\sum_{k=0}^{j} \gamma_{k}$: percentage of expected cumulative claims
- $\mathcal{D}_{I}=\left\{C_{i, j}: 1 \leq i \leq I, 0 \leq j \leq J, i+j \leq I\right\}$

Notation

- $C_{i, j}$: Cumulative claims (i accident year, j development year)
- μ_{i} : initial estimate of ultimate claim
- γ_{j} : percentage of expected incremental claims (w.r.t. ultimate)
- $\beta_{j}=\sum_{k=0}^{j} \gamma_{k}$: percentage of expected cumulative claims
- $\mathcal{D}_{I}=\left\{C_{i, j}: 1 \leq i \leq I, 0 \leq j \leq J, i+j \leq I\right\}$

AY	$C_{i, j}$	$j=0$	$j=1$	$j=2$	$j=3$	$j=4$	$j=J=5$	μ_{i}
2005	$i=1$	1001	1855	2423	2988	3335	3483	3517
2006	$i=2$	1113	2103	2774	3422	3844		3981
2007	$i=3$	1265	2433	3233	3977			4598
2008	$i=4$	1490	2873	3880		$C_{i, j}$		5658
2009	$i=5$	1725	3261					63214
2010	$i=I=6$	1889						

Notation

- $C_{i, j}$: Cumulative claims (i accident year, j development year)
- μ_{i} : initial estimate of ultimate claim
- γ_{j} : percentage of expected incremental claims (w.r.t. ultimate)
- $\beta_{j}=\sum_{k=0}^{j} \gamma_{k}$: percentage of expected cumulative claims
- $\mathcal{D}_{I}=\left\{C_{i, j}: 1 \leq i \leq I, 0 \leq j \leq J, i+j \leq I\right\}$

AY	$C_{i, j}$	$j=0$	$j=1$	$j=2$	$j=3$	$j=4$	$j=J=5$	μ_{i}
2005	$i=1$	1001	1855	2423	2988	3335	3483	3517
2006	$i=2$	1113	2103	2774	3422	3844		3981
2007	$i=3$	1265	2433	3233	3977			4598
2008	$i=4$	1490	2873	3880		$C_{i, j}$		5658
2009	$i=5$	1725	3261					6214
2010	$i=I=6$	1889						
	γ_{j}	28%	25%	17%	16%	10%	4%	
	β_{j}	28%	53%	70%	86%	96%	100%	

Basic Methods

Chain Ladder (CL):

$$
\begin{aligned}
& \mathbb{E}\left[C_{i, j} \mid C_{i, j-1}\right]=f_{j} C_{i, j-1}, \quad\left(f_{j}=\frac{\beta_{j}}{\beta_{j-1}}=1+\frac{\gamma_{j}}{\beta_{j-1}}\right) \\
& \widehat{C}_{i, J}=C_{i, I-i} \widehat{f}_{l-i+1} \cdots \widehat{f}_{I-1}=\frac{C_{i, l-i}}{\widehat{\beta}_{I-i}}
\end{aligned}
$$

- Sensitive to outliers on the last diagonal
- Large parameter estimation errors if $C_{i, j}$ are small for early years

Basic Methods

Chain Ladder (CL):

$$
\begin{aligned}
& \mathbb{E}\left[C_{i, j} \mid C_{i, j-1}\right]=f_{j} C_{i, j-1}, \quad\left(f_{j}=\frac{\beta_{j}}{\beta_{j-1}}=1+\frac{\gamma_{j}}{\beta_{j-1}}\right) \\
& \widehat{C}_{i, J}=C_{i, I-i} \widehat{f}_{l-i+1} \cdots \widehat{f}_{I-1}=\frac{C_{i, l-i}}{\widehat{\beta}_{I-i}}
\end{aligned}
$$

- Sensitive to outliers on the last diagonal
- Large parameter estimation errors if $C_{i, j}$ are small for early years

Bornhuetter-Ferguson (BF):

$$
\begin{aligned}
& \mathbb{E}\left[C_{i, j} \mid C_{i, j-1}\right]=C_{i, j-1}+\gamma_{j} \mu_{i} \\
& \widehat{C}_{i, J}=C_{i, I-i}+\left(\widehat{\gamma}_{I-i+1}+\cdots+\widehat{\gamma}_{I-1}\right) \mu_{i}
\end{aligned}
$$

- Robust w.r.t. outliers.
- Estimation error in the μ_{i}.

Idea/Problem: combination of CL and BF

We would like to use CL in the upper part and BF in the lower part of the triangle.

Idea/Problem: combination of CL and BF

We would like to use CL in the upper part and BF in the lower part of the triangle.

Problem: The assumptions underlying CL and BF always cover the behaviour of the whole triangle.

But: these assumptions differ!

- CL: increments are strongly correlated
- BF: increments are independent

Idea/Problem: combination of CL and BF

We would like to use CL in the upper part and BF in the lower part of the triangle.

Problem: The assumptions underlying CL and BF always cover the behaviour of the whole triangle.

But: these assumptions differ!

- CL: increments are strongly correlated
- BF: increments are independent
- One cannot apply CL and BF simultaneously without breaking assumptions. Consequence: no error estimates.

The Hybrid Chain Ladder method (HCL)

$\mathrm{CL:}$
$\mathbb{E}\left[C_{i, j} \mid C_{i, j-1}\right]=C_{i, j-1}+\gamma_{j} \frac{C_{i, j-1}}{\beta_{j-1}}$
$\mathbb{E}\left[C_{i, j} \mid C_{i, j-1}\right]=C_{i, j-1}+\gamma_{j} \mu_{i}$

The Hybrid Chain Ladder method (HCL)

CL:

$$
\mathbb{E}\left[C_{i, j} \mid C_{i, j-1}\right]=C_{i, j-1}+\gamma_{j} \frac{C_{i, j-1}}{\beta_{j-1}}
$$

BF:
$\mathbb{E}\left[C_{i, j} \mid C_{i, j-1}\right]=C_{i, j-1}+\gamma_{j} \mu_{i}$

Idea: use a weighted approach!
HCL:
$\mathbb{E}\left[C_{i, j} \mid C_{i, j-1}\right]=C_{i, j-1}+\gamma_{j}\left(\alpha_{i, j} C_{i, j-1}+\left(1-\alpha_{i, j}\right) \mu_{i}\right)$

The Hybrid Chain Ladder method (HCL)

$$
\begin{array}{cc}
\text { CL: } & \text { BF: } \\
\mathbb{E}\left[C_{i, j} \mid C_{i, j-1}\right]=C_{i, j-1}+\gamma_{j} \frac{C_{i, j-1}}{\beta_{j-1}} & \mathbb{E}\left[C_{i, j} \mid C_{i, j-1}\right]=C_{i, j-1}+\gamma_{j} \mu_{i}
\end{array}
$$

Idea: use a weighted approach!

HCL:

$$
\mathbb{E}\left[C_{i, j} \mid C_{i, j-1}\right]=C_{i, j-1}+\gamma_{j}\left(\alpha_{i, j} \frac{C_{i, j-1}}{\beta_{j-1}}+\left(1-\alpha_{i, j}\right) \mu_{i}\right)
$$

Parameter $\alpha_{i, j} \in[0,1]$ controls the behaviour of the HCL method:

- $\alpha_{i, j} \in[0,1]$ can be chosen differently for each i and j
- $\alpha_{i, j} \approx 1$: High data reliance $\rightarrow \mathrm{CL}$
- $\alpha_{i, j} \approx 0$: High reliance on μ_{i} (expert) \rightarrow BF

HCL model assumptions

HCL model: There exist parameters

- γ_{j} and $\sigma_{j}^{2}>0$
- $\beta_{j}>0$
- $\alpha_{i, j} \in[0,1]$
- $\mu_{i}>0$

$$
\begin{array}{r}
\text { for } j=0, \ldots, J, \\
\text { for } j=0, \ldots, J-1, \\
\text { for } i=1, \ldots, I \text { and } j=1, \ldots, J \\
\text { for } i=1, \ldots, I
\end{array}
$$

such that $\left(C_{1, j}\right)_{j=0, \ldots, J}, \ldots,\left(C_{I, j}\right)_{j=0, \ldots, J}$ are independent Markov processes with $\mathbb{E}\left[C_{i, 0}\right]=\gamma_{0} \mu_{i}$,

$$
\mathbb{E}\left[C_{i, j} \mid C_{i, j-1}\right]=C_{i, j-1}+\gamma_{j}\left(\alpha_{i, j} \frac{C_{i, j-1}}{\beta_{j-1}}+\left(1-\alpha_{i, j}\right) \mu_{i}\right) \quad(j>0)
$$

and

$$
\operatorname{var}\left(C_{i, j} \mid C_{i, j-1}\right)=\sigma_{j}^{2} \mu_{i}
$$

Mean and Variance

Define

$$
\xi_{i, j}=1+\alpha_{i, j} \frac{\gamma_{j}}{\beta_{j-1}}
$$

(plays the role of the development factor in CL).

Mean and Variance

Define

$$
\xi_{i, j}=1+\alpha_{i, j} \frac{\gamma_{j}}{\beta_{j-1}}
$$

(plays the role of the development factor in CL).
Theorem: For $0 \leq k \leq j \leq J$ we have

$$
\mathbb{E}\left[C_{i, j} \mid C_{i, k}\right]=C_{i, k} \prod_{k<m \leq j} \xi_{i, m}+\mu_{i} \sum_{k<n \leq j}\left(\left(1-\alpha_{i, n}\right) \gamma_{n} \prod_{n<m \leq j} \xi_{i, m}\right)
$$

Mean and Variance

Define

$$
\xi_{i, j}=1+\alpha_{i, j} \frac{\gamma_{j}}{\beta_{j-1}}
$$

(plays the role of the development factor in CL).
Theorem: For $0 \leq k \leq j \leq J$ we have

$$
\mathbb{E}\left[C_{i, j} \mid C_{i, k}\right]=C_{i, k} \prod_{k<m \leq j} \xi_{i, m}+\mu_{i} \sum_{k<n \leq j}\left(\left(1-\alpha_{i, n}\right) \gamma_{n} \prod_{n<m \leq j} \xi_{i, m}\right)
$$

Remark.

- if all $\alpha_{i, j}=1: \mathbb{E}\left[C_{i, J} \mid C_{i, I-i}\right]=C_{i, I-i} \prod_{I-i<j \leq J}\left(1+\gamma_{j} / \beta_{j-1}\right)$
- if all $\alpha_{i, j}=0: \mathbb{E}\left[C_{i, J} \mid C_{i, I-i}\right]=C_{i, I-i}+\mu_{i} \sum_{I-i<j \leq J} \gamma_{j}$

We can find an expression for the conditional variance.

Parameter estimation and model selection

- $\gamma_{j}, \sigma_{j}^{2}$ and β_{j} : Estimated from data \mathcal{D}_{l}
- $\alpha_{i, j}$: selected by the reserving actuary (model choice!)
- μ_{i} : expert estimate of ultimate claim
(e.g. expected loss ratio \times premium volume)

Estimation of γ_{j}

Recall

$$
\mathbb{E}\left[C_{i, j} \mid C_{i, j-1}\right]=C_{i, j-1}+\gamma_{j}\left(\alpha_{i, j} \frac{C_{i, j-1}}{\beta_{j-1}}+\left(1-\alpha_{i, j}\right) \mu_{i}\right)
$$

For $i+j \leq I$ define

$$
\Gamma_{i, j}=\frac{C_{i, j}-C_{i, j-1}}{\alpha_{i, j} \frac{C_{i, j-1}}{\beta_{j-1}}+\left(1-\alpha_{i, j}\right) \mu_{i}}
$$

Note that $\mathbb{E}\left[\Gamma_{i, j}\right]=\gamma_{j}$. Thus, define

$$
\widehat{\gamma}_{j}=\sum_{i=1}^{I-j} \widetilde{\omega}_{i, j} \Gamma_{i, j}
$$

for some optimal weights $\widetilde{\omega}_{i, j}$.
For claims prediction: replace all unknown parameters by estimates.

Selection of the $\alpha_{i, j}$

- Before: Select either CL or BF methods

Selection of the $\alpha_{i, j}$

- Before: Select either CL or BF methods
- HCL method: Choose $\alpha_{i, j} \in[0,1]$

$$
(i=1, \ldots, l, j=1, \ldots, J)
$$

Selection of the $\alpha_{i, j}$

- Before: Select either CL or BF methods
- HCL method: Choose $\alpha_{i, j} \in[0,1]$

$$
(i=1, \ldots, l, j=1, \ldots, J)
$$

Our $\alpha_{i, j}$ selection proposal

- Upper triangle, $i+j \leq I$:
$\alpha_{i, j}$: measure of predictive power of $C_{i, j-1} / \beta_{j-1}$ as an estimate of the ultimate claim $C_{i, J}$. Predictive power is high for late development years. Proposal:

$$
\alpha_{i, j}=\beta_{j-1}
$$

Our $\alpha_{i, j}$ selection proposal

- Upper triangle, $i+j \leq I$:
$\alpha_{i, j}$: measure of predictive power of $C_{i, j-1} / \beta_{j-1}$ as an estimate of the ultimate claim $C_{i, J}$. Predictive power is high for late development years. Proposal:

$$
\alpha_{i, j}=\beta_{j-1}
$$

- Lower triangle, $i+j>I$:
$\alpha_{i, j}$: determine the data-/expert- reliance of claims predictions. Proposal:

$$
\alpha_{i, j}=\widetilde{\alpha}_{i}
$$

($\widetilde{\alpha}_{i}$ chosen by the reserving actuary)

Our $\alpha_{i, j}$ selection proposal - illustration
$\alpha_{i, j}$ selection proposal: consequence for reserve estimates
If $\alpha_{i, j}$ are chosen according to our proposal, i.e.

$$
\begin{aligned}
& \alpha_{i, j}=\beta_{j-1} \quad \text { for } i+j \leq I, \\
& \alpha_{i, j}=\widetilde{\alpha}_{i} \quad \text { for } i+j>I .
\end{aligned}
$$

Then the reserves $R_{i}=\widehat{C}_{i, J}-C_{i, I-i}$ for accident year are approximately

$$
R_{i}=\widehat{C}_{i, J}-C_{i, l-i} \approx \widetilde{\alpha}_{i}\left(\frac{C_{i, I-i}}{\beta_{I-i-1}}-C_{i, I-i}\right)+\left(1-\widetilde{\alpha}_{i}\right)\left(\mu_{i} \sum_{I-i<j \leq J} \widehat{\gamma}_{j}\right)
$$

- similar to the Benktander-Hovinen estimator
- $\widetilde{\alpha}_{i} \approx 1$: Reserve estimate similar to CL
- $\widetilde{\alpha}_{i} \approx 0$: Reserve estimate similar to BF

Mean square error of prediction (MSEP)

The aggregate MSEP is defined as

$$
\begin{aligned}
\operatorname{msep}\left(\sum_{i=1}^{1} \hat{C}_{i, J}\right) & =\mathbb{E}\left[\left(\sum_{i=1}^{\prime}\left(\widehat{C}_{i, J}-C_{i, J}\right)\right)^{2} \mid \mathcal{D}_{l}\right] \\
& =\sum_{i=1}^{\prime} \operatorname{var}\left(C_{i, J} \mid \mathcal{D}_{l}\right)+\left(\sum_{i=1}^{\prime}\left(\widehat{C}_{i, J}-\mathbb{E}\left[C_{i, J} \mid \mathcal{D}_{l}\right]\right)\right)^{2}
\end{aligned}
$$

Both terms (process variance and parameter estimation error) can be estimated.

Claims development result (CDR)

Suppose we have a one year perspective (balance-sheet!).
Today:

- Estimate $\hat{C}_{i, J}^{\prime}$ of ultimate claim $C_{i, J}$ based on triangle \mathcal{D}_{l}

Claims development result (CDR)

Suppose we have a one year perspective (balance-sheet!).
Today:

- Estimate $\widehat{C}_{i, J}^{\prime}$ of ultimate claim $C_{i, J}$ based on triangle \mathcal{D}_{l}

Next year:

- More data becomes available \rightarrow additional diagonal
- Volatility realized on new diagonal \rightarrow updated parameter estimates
- New predictions $\widehat{C}_{i, J}^{I+1}$ based on the enlarged triangle

Uncertainty in the CDR

The CDR of accident year i is defined by

$$
C D R_{i}=\widehat{C}_{i, J}^{\prime}-\widehat{C}_{i, J}^{I+1}
$$

Uncertainty in the CDR

The CDR of accident year i is defined by

$$
C D R_{i}=\widehat{C}_{i, J}^{l}-\widehat{C}_{i, J}^{I+1}
$$

As we use "best estimates" as claims reserves, it holds

$$
\mathbb{E}\left[C D R_{i} \mid \mathcal{D}_{l}\right]=0
$$

Uncertainty in the CDR

The CDR of accident year i is defined by

$$
C D R_{i}=\widehat{C}_{i, J}^{\prime}-\widehat{C}_{i, J}^{I+1}
$$

As we use "best estimates" as claims reserves, it holds

$$
\mathbb{E}\left[C D R_{i} \mid \mathcal{D}_{l}\right]=0
$$

Solvency (eg. SST) regulations consider risk in a one-year perspective!
Estimate

$$
\mathbb{E}\left[C D R_{i}^{2} \mid \mathcal{D}_{l}\right] \quad \text { and } \quad \mathbb{E}\left[\left(\sum_{i=1}^{1} C D R_{i}\right)^{2} \mid \mathcal{D}_{l}\right] .
$$

- Can be estimated for the HCL method, but cumbersome expressions.

Uncertainty in the μ_{i} - Possible extension of the model

Up to now, the μ_{i} were deterministic.
For prediction error estimates (MSEP), estimation errors in μ_{i} should be accounted for.

Uncertainty in the μ_{i} - Possible extension of the model

Up to now, the μ_{i} were deterministic.
For prediction error estimates (MSEP), estimation errors in μ_{i} should be accounted for.

Idea: Use scenarios for μ_{i} !
Consequence: MSEP gets larger.

Excel spreadsheet

Discussion

Excel spreadsheet

www.RiskLab.ch/hclmethod

\Downarrow
(典 http://www.risklab.ch/hclmethod

EH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

ETH Zurich - RiskLab Switzerland - The hybrid chain ladder method

The hybrid chain ladder method

RiskLab Switzerland

Contact

Members of RiskLab

Research Projects

Events
Books on Risk Management

The following links provides the files for the study of the HCL method.

- The Excel sheet with an easy-to-use implementation of the HCL method: $\underline{\text { HCLReserving.xIs }}$
- A preprint of the paper: HCLmethod.pdf
- A presentation illustrating the main features of the HCL method: HCLpresentation.pdf

The spreadsheet was tested with the Excel versions 2007 and 2010. It might function with older versions, too. Note that Macros need to be enabled. Unfortunately Openoffice is not compatible. For any questions, do not hesitate to contact the authors Robert Salzmann and Philipp Arbenz.

References

- Arbenz, P. and Salzmann, R. (2010): A robust distribution-free loss reserving method with weighted data- and expert-reliance.
- Wüthrich, M.V. and Merz, M. (2008): Stochastic Claims Reserving Methods in Insurance. Wiley Finance: Chichester

Thank you for your attention!

