Michael Bamberger, PricewaterhouseCoopers AG

CAE-Meeting From deterministic to stochastic Reserving – an overview November 2009

Agenda

Deterministic methods Statistical methods Stochastic methods Why stochastic reserving?

Focus on usability and ideas behind the concepts!

Deterministic Methods

Characteristics:

- Exactly reproducible
- Yields only an expected value
- Used since: ? (for a long time...)

Chain Ladder

Michael Bamberger, PricewaterhouseCoopers

Chain Ladder

Pros:

- > The whole historical triangle is taken into account
- Intuitive and easy to implement
- > Can easily be adjusted by changing weights of prior years
- > No further external data is needed

Cons:

- > Late development periods and recent accident years: little data available
- > No evaluation of the quality of the reserve estimate

Munich Chain Ladder (MCL)

- Problem: Either data from paid or from incurred triangle can be used as an input for most of the reserving methods.
- Ultimate shouldn't depend on whether you reserve on your paid or on your incurred triangle.
- Goal of MCL: Close gap between paid and incurred ultimate.
- MCL doesn't force the ultimates to be equal!
- Different approach from René Dahms ("A Loss Reserving method for incomplete data"): projected ultimates from paid and incurred are forced to be equal.

Munich Chain Ladder

Munich Chain Ladder

Pros:

- > Ultimates based on paid and incurred data
- Gap between paid & incurred ultimates becomes closer

Cons:

- Implementation of MCL more difficult than CL
- > No evaluation of the quality of the calculated reserves

<u>Mack & Quarg (2004):</u> Munich Chain Ladder - A reserving method that reduces the gap between IBNR projections based on paid losses and IBNR projections based on incurred losses

Numerical example: Paid triangle

Numerical example: Incurred triangle

Michael Bamberger, PricewaterhouseCoopers

Ultimates for different deterministic models

In CHF 1000	CLpaid	CL inc.	B-F paid	B-F inc.	CC paid	CC inc.	MCL paid	MCL inc.
1995	27'831	29'297	27'831	29'297	27'831	29'297	27'831	29'297
1996	26'190	27'615	26'200	27'614	26'199	27'625	26'195	27'614
÷		:		:		:		:
2007	24'198	34'183	25'716	34'159	24'281	34'030	27'653	31'314
2008	25'690	29'555	27'432	29'542	25'459	29'823	26'722	28'693
Total	350'106	382'128	355'530	381'391	350'781	381'897	355'953	377'448

- "Nice" portfolio: Similar results for all methods
- MCL minimizes the gap between paid and incurred

Statistical methods

Characteristics:

- Exactly reproducible
- Yields expected value of ultimate = first moment of distribution
- > Yields prediction variance of ultimate = second moment of distribution
- ➢ Since 1990

Statistical methods: an overview

> Deterministic models enriched with an underlying stochastic model

- Statistical Chain Ladder (Mack)
- Statistical Bornhuetter Ferguson
- Statistical Munich Chain Ladder
- Log Regression Models and GLM
 - Zenwirth Models (see presentation by Spencer Gluck)
- Bayesian Models (Benktander, Cape Cod, Credibility models)
- Special case: Distributional models (Log-normal model -> SST)

Different kind of errors

Mack Chain Ladder

Error calculation for Mack Chain Ladder

It is straightforward to find unbiased estimators for the parameters f_k and σ_k :

$$\widehat{f}_k = \frac{\sum_{j=1}^{n-k} C_{j,k+1}}{\sum_{j=1}^{n-k} C_{j,k}}$$

$$\widehat{\sigma}_{k} = \frac{1}{n-k-1} \sum_{i=1}^{n-k} C_{i,k} \left(\frac{C_{i,k+1}}{C_{i,k}} - \widehat{f}_{k} \right)^{2}$$

November 2009 Slide 16

Michael Bamberger, PricewaterhouseCoopers

Error calculations for stochastic Chain Ladder

Notation:

- Estimated ultimate for accident year i (at time n): $\hat{C}_{i,n}$
- Theoretical best estimate based on the stochastic model: $C_{i,n}$
- Sigma-Algebra with information to date: *1*

Mean Square error of prediction of the ultimate :

$$\operatorname{msep}_{C_{i,n}|\mathscr{D}}(\widehat{C}_{i,n}) = E\left[\left(\widehat{C}_{i,n} - C_{i,n}\right)^{2} \middle| \mathscr{D}\right]$$
$$= \operatorname{Var}\left(C_{i,n}|\mathscr{D}\right) + E\left[\left(\widehat{C}_{i,n} - E\left[C_{i,n}|\mathscr{D}\right]\right)^{2}\right]$$
$$\underbrace{\operatorname{Var}\left(C_{i,n}|\mathscr{D}\right)}_{\operatorname{Var}} + \underbrace{\operatorname{Parameter error}}_{\operatorname{Parameter error}}$$

November 2009 Slide 17

Error calculations for stochastic Chain Ladder

Based on the estimators \widehat{f}_k and $\widehat{\sigma}_k$ one can give an estimator of the mean square error of prediction:

$$\widehat{\operatorname{msep}}_{C_{i,n}|\mathscr{D}}\left(\widehat{C}_{i,n}\right) = \widehat{C}_{i,n}^{2} \sum_{k=n+1-i}^{n-1} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}} \frac{1}{\widehat{C}_{i,k}} + \widehat{C}_{i,n}^{2} \sum_{k=n+1-i}^{n-1} \frac{\widehat{\sigma}_{k}^{2}}{\widehat{f}_{k}^{2}} \frac{1}{\sum_{j=1}^{n-k} C_{j,k}}$$

$$\operatorname{Prediction error} = \operatorname{Random error} + \operatorname{Parameter error}$$

This formula can be implemented and calculated while running Chain Ladder => we have a measure of uncertainty for our ultimate estimation!

Mack Chain Ladder

Pros:

- > Can easily be adjusted by changing weights of prior years
- > No external data is needed
- > Uncertainty of ultimate can be estimated by error calculations
- Symmetric prediction intervals can be determined

Cons:

- > Error estimations require further implementation work
- > Can only calculate a second moment => quantiles can't be determined

<u>Mack (1993)</u>: Distribution-Free Calculation of the Standard Error of Chain Ladder Reserve Estimates

Mack chain ladder – Error calculations for paid data

In CHF 1000	Ultimate	Pred. error	in % of Ult.	Estim. error	in % of Ult.	Rand. error	in % of Ult.
1996	26'190	57	0.22%	40	0.15%	41	0.16%
1997	28'027	126	0.45%	77	0.28%	100	0.36%
:	÷	÷		÷		:	
2007	24'198	836	3.46%	283	1.17%	787	3.25%
2008	25'689	1'121	4.36%	353	1.37%	1'064	4.14%
Total	350'105	2'898	0.83%	2'136	0.61%	1'957	0.56%

Stochastic methods

Characteristics:

- Monte Carlo simulation
- > not reproducible (only asymptotically)
- yields full distribution of ultimate
- First appeared in 1979, main improvements since 1999

Stochastic methods: an overview

Bootstrapping methods

- Chain Ladder Bootstrap
- Non-parametric bootstrap
- Parametric bootstrap
- Markov Chain Monte Carlo methods
 - Metropolis Hastings
 - Gibbs
- Scenario generation

Chain Ladder bootstrap

November 2009 Slide 23

Chain Ladder bootstrap

Chain Ladder Bootstrap

Mack chain ladder – Chain Ladder Bootstrap

Paid triangle	Mack Ult.	Pred. error	in % of Ult.	BS Ult.	Pred. error	in % of Ult.
1996	26'189	57	0.22%	26'164	1'116	4.27%
1997	28'027	126	0.45%	28'015	1'148	4.10%
:		÷			:	
2007	24'198	836	3.46%	24'106	1'254	5.20%
2008	25'689	1'121	4.36%	25'742	1'856	7.21%
Total	350'105	2'898	0.83%	350'010	4'551	1.30%

Chain Ladder Bootstrap

Pros:

- > We obtain the empirical distribution of the ultimate
- > We can calculate average, median and all other quantiles
- > Asymmetric prediction intervals can be determined
- Easy to implement
- > Yields empirical distribution for other figures (e.g. claim development)

Cons:

> The results strongly depend on how you define your residuals. There are a lot of different approaches – which one to choose?

<u>England & Verrall (1999):</u> Analytic and bootstrap estimates of prediction errors in claims reserving.

Prediction intervals for the total Ultimate

In general: 95% prediction interval is of interest.

Statistical models: Standard error of prediction can be used. For Mack Chain Ladder we use the following approach:

$$C_{total,n} \sim \mathcal{N}(\widehat{C}_{total,n}, \text{msep(total)})$$

$$\Rightarrow$$

$$\text{conf.int.}(0.95) \approx \left[\widehat{C}_{total,n} - 2\sqrt{msep(tot)}, \widehat{C}_{total,n} + 2\sqrt{msep(total)}\right]$$

Stochastic models: The empirical distribution of the total ultimate can be used. For the Chain Ladder Bootstrap we would have:

$$C_{total,n} \sim F_{BS}^{emp.}$$

$$\Rightarrow$$

conf.int.(0.95) = [(F_{BS}^{emp.})^{-1}(0.025), (F_{BS}^{emp.})^{-1}(0.975)]

Prediction Intervals - comparison

More sophisticated stochastic methods I

Multiline Bootstrap

- So far: Only the reserve for one line of business calculated
- Goal: Empirical aggregate reserve distribution of several LoBs
- Multiline Bootstrap accounts for dependencies between different LoBs
- Idea: Simultaneous resampling of residuals

<u>Kirschner, Kerley & Isaacs (2002):</u> Two approaches to calculating correlated reserve indications across multiple lines of business.

More sophisticated stochastic methods II

- Scenario generation
 - So far: Assumption that inflation behaves in the future as in the past. What if this assumption is wrong?
 - In models based on scenario generation, different economic scenarios (regulars and extremes) are considered

<u>Stephen D'Arcy, Alfred Au, Liang Zhang (2007):</u> Property-Liability Insurance Loss Reserve Ranges Based on Economic Value (online-calculation available)

Scenario generation

Base Case: Current inflation rate 3.5%, inflation volatility 2% High Inflation: Current inflation rate 8%, inflation volatility 5%

Mean 1'064'400, Stdev 25'300 Mean 1'137'900, Stdev 76'100 Michael Bamberger, PricewaterhouseCoopers Why stochastic Reserving?

- Solvency II
- > IFRS 4 Phase 2
- Pricing
- Analysts
- Rating Agencies
- ≻ M&A

Reserving methods – a landscape

Stochastic Reserving is not more precise,

but it determines its own precision.

© 2009 PricewaterhouseCoopers. All rights reserved. "PricewaterhouseCoopers" refers to the network of member firms of PricewaterhouseCoopers International Limited, each of which is a separate and independent legal entity. *connectedthinking is a trademark of PricewaterhouseCoopers LLP (US).

