

Innovations and Value Creation in Predictive Modeling

<section-header><text>

Innovations and Value Creation in Predictive Modeling

- A look back at the past decade of innovation in predictive analytics
- New innovations in predictive modeling in Auto and Homeowners Insurance
- Measuring the value of increased rate segmentation

The Recipe for Advanced Analytics

What has the impact been?

- Major innovations in an historically static rate plan
- Increased competition
- Profitable growth for adopters of advanced analytics
- Hunger for the next innovation

Indication of Increased Competition

Number of Companies writing Personal Auto Insurance in the US

Indication of Increased Competition

Innovations in Predictive Modeling: Predictions at the Address Level

Territorial Conundrum

• Territories should be big

Have a sufficient volume of business to make credible estimates of the losses.

Territories should be small

-Conditions vary within territory.

Data Versus the Conundrum

Some Environmental Features (Possibly) Related to Claims

- Proximity to Businesses and Attractions
 - Workplaces, Shopping Centers, Contractors, etc.
- Weather / Terrain: Wind, Temperature, Snowfall, Change in Elevation
- Population (Traffic) Density
- Others : Commuting Patterns, Coastal proximity, etc.

Combining Environmental Variables at a Particular Address

- Individually, the geographic variables have a predictable effect on claim rate and severity.
- Variables for a particular location could have a combination of positive and negative effects.
- ISO has built models to calculate the combined effect of all variables.
 - Based on countrywide data Actuarially credible

Variable Selection is Multiplied by the Number of Models

- Frequency and Severity are modeled separately
- Models are at coverage / peril level \bigcirc
 - Five auto coverages: BI, PD, PIP, Comp. & Coll.
 - 10 models
 - Nine home owners perils:

In Depth for Auto Weather Component

Environmental Model

Loss Cost = Pure Premium = Frequency x Severity Frequency = $\frac{e^{\lambda}}{1+e^{\lambda}}$ Severity = e^{μ}

- $\lambda = Intercept$
 - + Weather
 - + Traffic Density
 - + Traffic Generators
 - + Traffic Composition
 - + Experience and Trend

- $\mu = \text{Intercept}$
 - + Weather
 - + Traffic Density
 - + Traffic Generators
 - + Traffic Composition
 - + Experience and Trend

Constructing the Components Frequency Model as Example

$\lambda =$ Intercept + $\alpha_1 \cdot \mathbf{X}_1$ + ... + $\alpha_n \cdot \mathbf{X}_n$ $+ \alpha_{n_1+1} \cdot \mathbf{X}_{n_1+1} + \dots + \alpha_{n_2} \cdot \mathbf{X}_{n_2}$ + $\alpha_{n_2+1} \cdot \boldsymbol{X}_{n_2+1} + \ldots + \alpha_{n_2} \cdot \boldsymbol{X}_{n_2}$ $+ \alpha_{n_3+1} \cdot \mathbf{X}_{n_3+1} + \dots + \alpha_{n_4} \cdot \mathbf{X}_{n_4}$ + $\alpha_{n_4+1} \cdot \mathbf{X}_{n_4+1} + \ldots + \alpha_{n_5} \cdot \mathbf{X}_{n_5}$ + Other Classifiers

= Weather
= Traffic Density
= Traffic Generators
= Traffic Composition
= Experience & Trend

An Example on the Ground

Homeowners Amount Relativities by Peril

Loss Cost per \$1000 of Building Coverage

Current Relativity

Modeled by Peril

Significant variation by peril

Homeowners Rating Factors by Peril

23

- Rating Factors that vary by peril provide lift
- Adds accuracy and complexity
 - All-peril relativities can be derived from peril-based relativities according to peril mix within the area
 - Local Prediction by peril may result in varying peril loss costs at the address level
- Effectively produces all-peril relativities that vary at the address level

Overall Model Diagnostics

Sort in order of increasing prediction

Frequency & Severity

Group observations in buckets

- 1/100th of record count for frequency
- 1/50th of the record count for severity

Calculate bucket averages

- Apply the GLM link function for bucket averages and predicted value
 - logit for frequency
 - log for severity

Plot predicted vs empirical

With confidence bands

Overall Diagnostics - Frequency

Overall Diagnostics - Severity

Empirical vs. Predicted Log (Base 10) Severities: BI

Customized Model

Loss Cost = Pure Premium = Frequency x Severity

Frequency =
$$\frac{e^{n}}{1+e^{n}}$$

 $\alpha_1 \dots \alpha_5 \equiv 1$ in industry model

Severity model customized similarly

 $\lambda = \alpha_0$ + $\alpha_1 \cdot \text{Weather}$ + $\alpha_2 \cdot \text{Traffic Density}$ + $\alpha_3 \cdot \text{Traffic Generators}$ + $\alpha_4 \cdot \text{Traffic Composition}$ + $\alpha_5 \cdot \text{Experience and Trend}$ + Other Classifiers

Predictions at the Address Level Summary

- Model estimates loss cost as a function of business, demographic and weather conditions associated with address.
- Preparing data for models based on geography is not a trivial exercise
- Showed fit assessment and model diagnostics
- Indicated how to customize the model

Measuring the Value of Rate Segmentation

Our Challenge

 Enhanced rate segmentation can add significant value

BUT

Increased segmentation has a cost

• How do we evaluate the value vs. cost?

How do we make the case to decision makers?

We need to enhance our analytics in order to maintain our competitive pricing advantage!

I don't want to lose our pricing advantage. How much will it cost to implement an enhanced pricing strategy?

It will cost \$10 million to modify our underwriting and agency systems.

We will implement the new rate structure so that it will be revenue neutral.

You want me to spend \$10 million to get NO additional revenue? That doesn't make any sense!

Why doesn't he understand how important this pricing strategy is to our business?

Where can I find an actuary with some business sense?

What's wrong with this dialog?

Focus only on implementation costs

- In a competitive marketplace, there is a cost to doing nothing
- Lost business, lost revenue, and increasing cost of remaining policies
- Short-term view of revenue impact
 - "Revenue Neutral" applies only to average premiums on current book
 - There can be long-term revenue impacts

How to make the case better

- Better projections of revenue and profit impacts
 - Look beyond "Revenue Neutral" implementation
- Better consideration of marketplace dynamics
 - Includes customer retention and competitive effects

Demonstrate the value in monetary terms

The Discounted Cash Flow Trap

Projected cash stream from investing in innovation

 Usual DCF or NPV comparison

> Assumed cash stream resulting from doing nothing

Should make this comparison

More likely cash stream resulting from doing nothing

Source: Christensen, Kaufmann, Shih, "Innovation Killers: How Financial Tools Destroy Your Capacity to Do New Things", Harvard Business Review, Jan 2008

Illustration

- Insurer writes 3 policies
- All policies priced in the same class
 - Expected Loss Ratio = 50%
 - Profit if Loss Ratio < 60%</p>
- More accurate segmentation is available in the marketplace
 - Used by competitors
 - Places some policies at risk

Illustration – Base Case

Policy #	Premium	Insurer's Expected Loss	Break-Even Loss	Accurate Expected Loss	Insurer's Profit
1	60	30	36	20	16
2	60	30	36	30	6
3	60	30	36	40	-4
Total	180	90	108	90	18
Ratio to Premium		50%	60%	50%	10%

Policy #	Premium	Insurer's Expected Loss	Break-Even Loss	Accurate Expected Loss	Insu Pro	rer's ofit
1	60	30	36	20	-16 -	0
2	60	30	36	30		6
3	60	30	36	40		-4
Total	180	90	108	90	-18	2
Ratio to Premium		50%	60%	50%	10%	1%

Lost Profit = 16

Value of Lift (VoL)

- Assume a competitor comes in and takes away the above average risks.
- Because of adverse selection, the new loss ratio will be higher than the current loss ratio.
- What is the value of avoiding this fate?
 - \$16 in this illustration
 - Insurer could have spent additional \$16 for segmentation and been no worse off
- May express the VoL as a \$ per car year.
 \$5.33 per policy

Policy #	Premium	Insurer's Expected Loss	Break-Even Loss	Accurate Expected Loss	Insurer's Profit
2	70	35	42	30	12
3	70	35	42	40	2
Total	140	70	84	90	14
Ratio to Premium		50%	60%	50%	10%

Policy #	Premium	Insurer's Expected Loss	Break-Even Loss	Accurate Expected Loss	Insu Pro	rer's ofit
2	70	35	42	30	12	0
3	70	35	42	40		2
Total	140	70	84	90	14	2
Ratio to Premium		50%	60%	50%	10%	1.4%

Lost Profit = 12

Policy #	Premium	Insurer's Expected Loss	Break-Even Loss	Accurate Expected Loss	Insurer's Profit
3	80	40	48	40	8
Total	80	80	48	40	8
Ratio to Premium		50%	60%	50%	10%

Illustration – Summary

No Enhanced Segmentation

Year	Premium	Profit
0	180	18
1	120	2
2	70	2
3	80	8

NPV 25

Declining Revenue
 Declining Drofit

Declining Profit

- Calculate NPV
 Using 10% discount rate
- Proper Basis of Comparison

Alternative Scenario Enhanced Segmentation

Year	Premium	Profit excl Marginal Costs	Marginal Costs	Profit
0	180	18	10	8
1	180	18	3	15
2	180	18	3	15
3	180	18	3	15
			NPV	41

- Assume premium and policies are retained
- Directly consider implementation costs
 Higher first year expenses

Comparison

No Enhanced Segmentation

Enhanced Segmentation

Year	Premium	Profit	Year	Premium	Profit
0	180	18	0	180	8
1	120	2	1	180	15
2	70	2	2	180	15
3	80	8	3	180	15
	NPV	25		NPV	41

Greater NPV for Enhanced Segmentation

 Glenn Meyers, "Value of Lift", Actuarial Review, May 2008

 David Cummings, "Value of Lift – A Net Present Value Framework", Actuarial Review, Feb 2009

Summary

- Predictive Modeling has had a profound impact on the insurance industry
- Significant innovations in progress for the next wave of advanced analytics
- Assessing the value of segmentation requires understanding of marketplace dynamics
- Profitability and market share are at risk for those who do nothing

