
Casualty Actuaries of the Mid-Atlantic Region

June 4, 2009

Definitions of Terms

Measures of Risk from Statistics:

- Variance, standard deviation, skewness, average absolute deviation, Value at Risk, Tail Value at Risk, *etc.* which are measures of dispersion.
- Other measures useful in determining "reasonableness" could include: mean, mode, median, pain function, *etc.*
- The choice for measure of risk will also be important when considering the "reasonableness" and "materiality" of the reserves in relation to the capital position.

📫 Milliman

Ranges vs. Distributions

- A "Range" is not the same as a "Distribution"
- A Range of Reasonable Estimates is a range of estimates that could be produced by appropriate actuarial methods or alternative sets of assumptions that the actuary judges to be reasonable.
- A *Distribution* is a statistical function that attempts to quantify probabilities of all possible outcomes.

🗳 Milliman

Page 1 of 12

Casualty Actuaries of the Mid-Atlantic Region

June 4, 2009

Ranges vs. Distributions

A Range, by itself, creates problems:

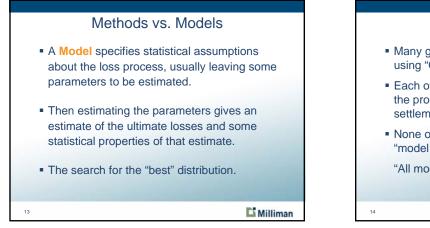
- A range can be misleading to the layperson it can give the impression that any number in that range is equally likely.
- A range can give the impression that as long as the carried reserve is "within the range" anything is reasonable.

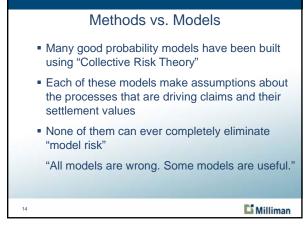
🕻 Milliman

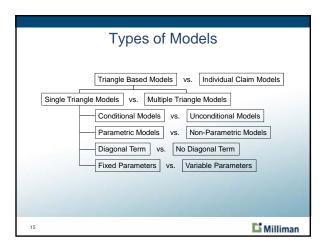
Ranges vs. Distributions

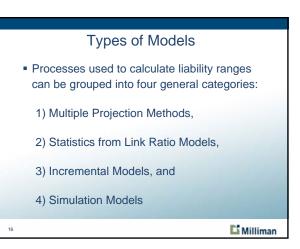

A Range, by itself, creates problems:

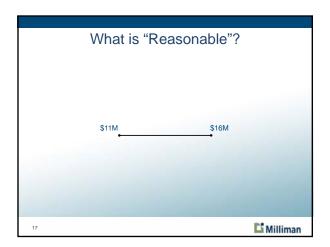
- There is currently no <u>specific</u> guidance within the actuarial community (e.g., +/- X%, +/- \$X, using various estimates, etc.).
- A range, in and of itself, needs some other context to help define it (e.g., how to you calculate a risk margin?)

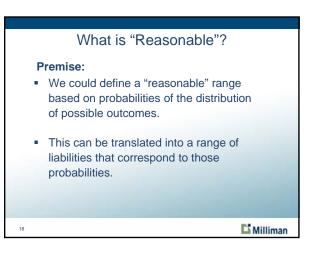

Milliman





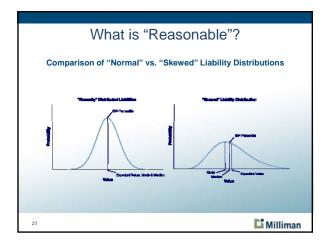


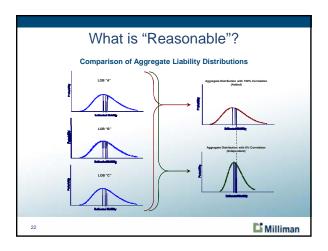

Casualty Actuaries of the Mid-Atlantic Region

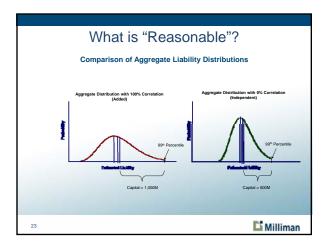


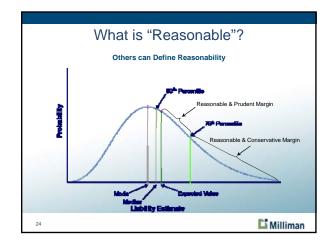
Casualty Actuaries of the Mid-Atlantic Region

June 4, 2009

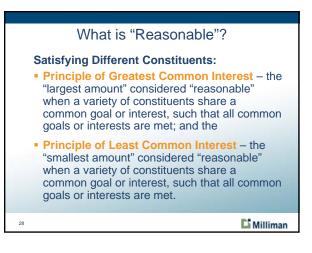


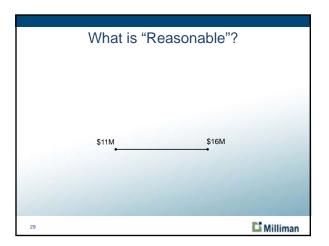

- A probability range has several advantages:
- The "risk" in the data defines the range.
- Adds context to other statistical measures.
- A "reserve margin" can be defined more precisely.
- Can be related to risk of insolvency and materiality issues.
- Others can define what is reasonable for them.

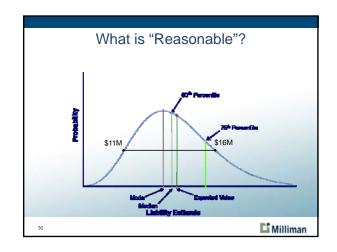

19


C Milliman

					• •	
	Relatively Stable LOB		le LOB	More Volatile LOB		
Method	Low	EV	High	Low	EV	High
Expected +/- 20%	80	100	120	80	100	120
50th to 75th Percentile	97	100	115	90	100	150

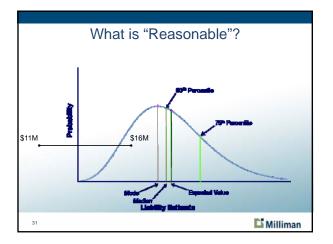

Page 4 of 12

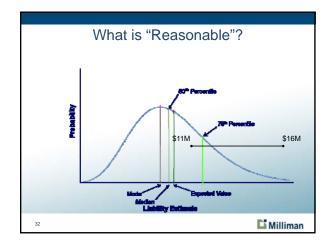

Casualty Actuaries of the Mid-Atlantic Region

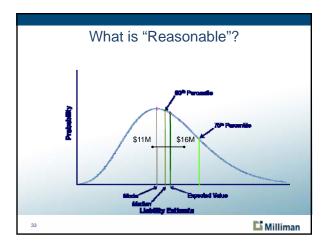

		on of " ith Prob					,
		"L	ow" Res	serve Ri	sk		
		0	Correspondi	ng Surplus	Depending	on Situatio	n
Loss Re	eserves	Situation A		Situation B		Situation C	
Amount	Prob.	Amount	Prob. Of Ins.	Amount	Prob. Of Ins.	Amount	Prob. O Ins.
100	50%	80	40%	120	15%	160	1%
	75%	70	40%	110	15%	150	1%
110		60	40%	100	15%	140	1%

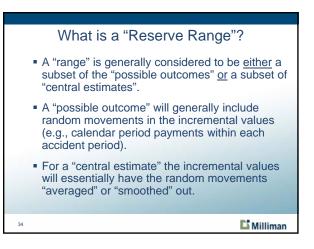
001		on of " ith Prob				-	,00	
		"Me	dium" F	Reserve	Risk			
			Correspond	ing Surplus	Depending	on Situatio	on	
Loss Re	Loss Reserves		Situation A		Situation B		Situation C	
Amount	Prob.	Amount	Prob. Of Ins.	Amount	Prob. Of Ins.	Amount	Prob. C Ins.	
100	50%	80	60%	120	40%	160	10%	
120	75%	60	60%	100	40%	140	10%	
140	90%	40	60%	80	40%	120	10%	

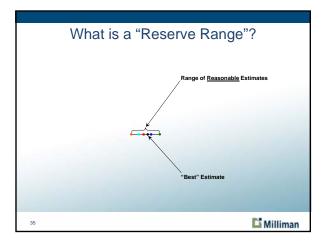
		ith Prob					,00	
		"H	igh" Re	serve R	isk			
		0	Correspondi	ng Surplus	Depending	on Situatio	n	
Loss Re	eserves	Situa	Situation A		Situation B		Situation C	
Amount	Prob.	Amount	Prob. Of Ins.	Amount	Prob. Of Ins.	Amount	Prob. O Ins.	
100	50%	80	80%	120	50%	160	20%	
150	75%	30	80%	70	50%	110	20%	
	90%	-20	80%	20	50%	60	20%	

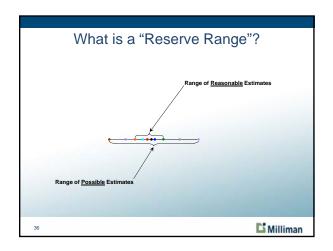


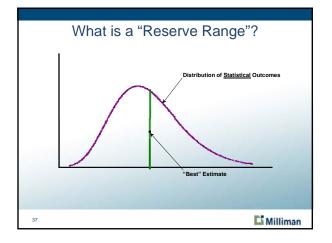


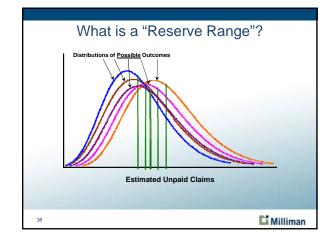


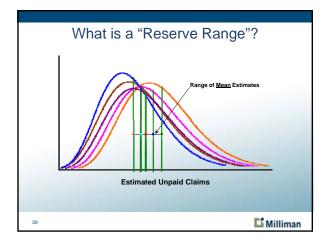

Casualty Actuaries of the Mid-Atlantic Region

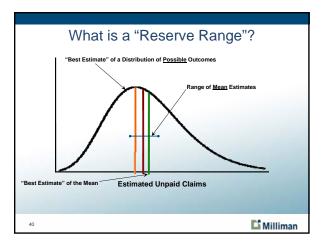

June 4, 2009

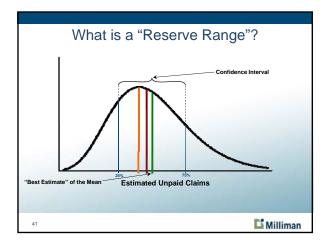


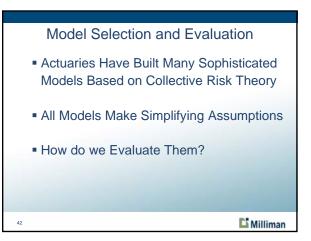




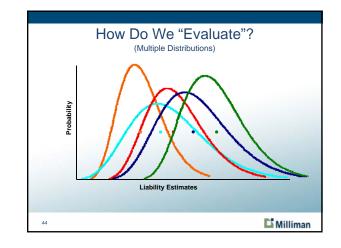


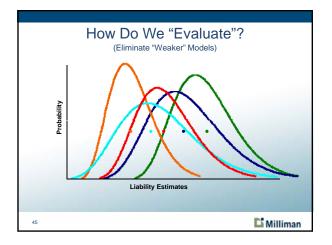

© Copyright 2009. Milliman, Inc. All Rights Reserved.

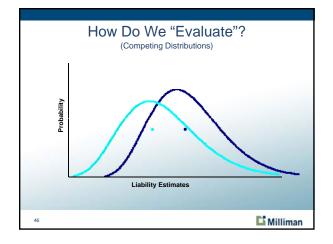

Casualty Actuaries of the Mid-Atlantic Region

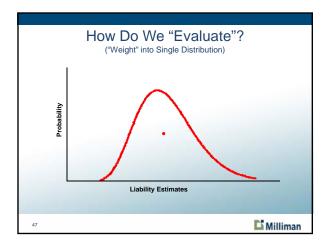


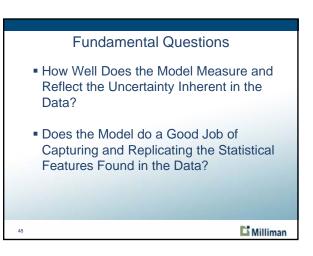









Casualty Actuaries of the Mid-Atlantic Region



Casualty Actuaries of the Mid-Atlantic Region

June 4, 2009

Modeling Goals

- Is the Goal to Minimize the Range (or Uncertainty) that Results from the Model?
- Goal of Modeling is <u>NOT</u> to Minimize **Process Uncertainty!**

49

53

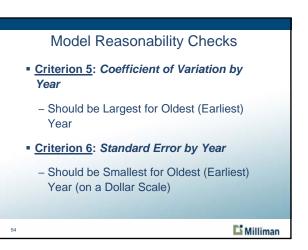
Goal is to Find the Best Statistical Model, While Minimizing Parameter and Model Uncertainty.

Milliman

Model Selection & Evaluation Criteria Model Selection Criteria Model Reasonability Checks Goodness-of-Fit & Prediction Errors

Milliman

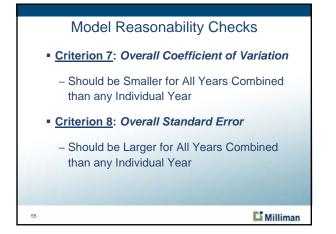
Milliman



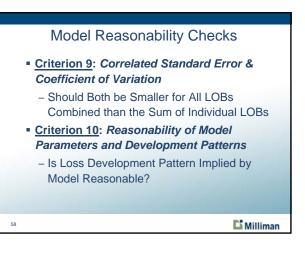
Model Selection Criteria

<u>Criterion 4</u>: Cost/Benefit Considerations

- Can Analysis be Performed Using Widely Available Software?
- Analyst Time vs. Computer Time?
- How Difficult to Describe to Junior Staff, Senior Management, Regulators, Auditors, etc.?


C Milliman

Page 9 of 12


Casualty Actuaries of the Mid-Atlantic Region

June 4, 2009

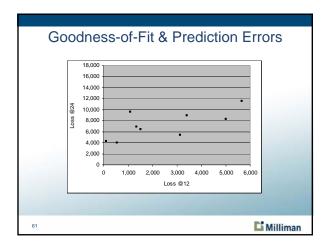
		Standard	Coeffient of
Accident Yr	Mean	Error	Variation
1996	26,416	37,927	143.6%
1997	26,216	38,774	147.9%
1998	50,890	54,508	107.1%
1999	90,705	74,824	82.5%
2000	148,110	99,986	67.5%
2001	186,832	117,230	62.7%
2002	418,461	183,841	43.9%
2003	638,082	268,578	42.1%
2004	607,107	477,760	78.7%
2005	1,521,202	1,017,129	66.9%
Total	3,714,020	1,299,184	35.0%

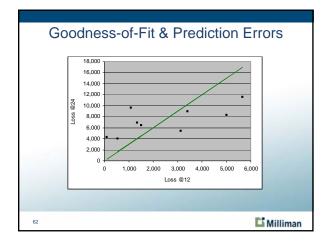
N4- dal 1			
Nodel I	Reasona	ibility Cr	IECKS
		Standard	Coeffient of
Accident Yr	Mean	Error	Variation
1996	25,913	37,956	146.5%
1997	25,708	38,846	151.1%
1998	50,043	54,780	109.5%
1999	89,071	74,987	84.2%
2000	145,388	100,373	69.0%
2001	183,864	118,502	64.5%
2002	411,367	185,211	45.0%
2003	628,347	271,722	43.2%
2004	1,113,073	229,923	20.7%
2005	1,263,550	253,596	20.1%
Total	3,936,326	599,048	15.2%

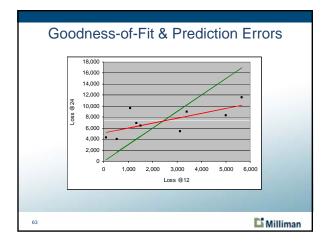
Model Reasonability Checks

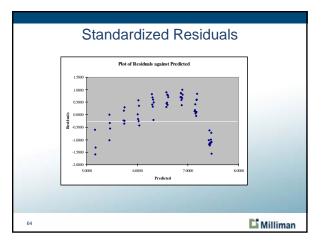
- <u>Criterion 11</u>: Consistency of Simulated Data with Actual Data
 - Can you Distinguish Simulated Data from Real Data?
- <u>Criterion 12</u>: Model Completeness and Consistency

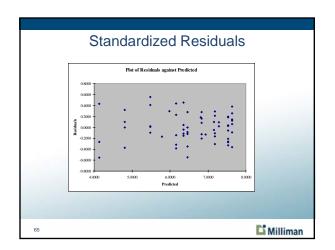
59


 Is it Possible Other Data Elements or Knowledge Could be Integrated for a More Accurate Prediction?

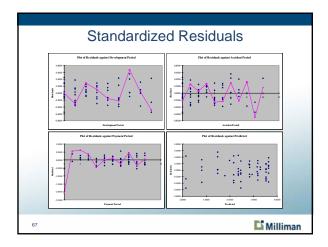

🕻 Milliman

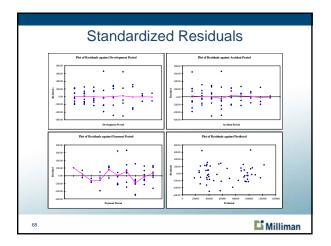



Page 10 of 12


Casualty Actuaries of the Mid-Atlantic Region







Casualty Actuaries of the Mid-Atlantic Region

