

Weighting (Reserve) Indications from Multiple Methods

Thursday, October 8, 2015

Rajesh Sahasrabuddhe Philadelphia

1 Current Approach

Estimated ultimate claims at 12 months

Assume the following

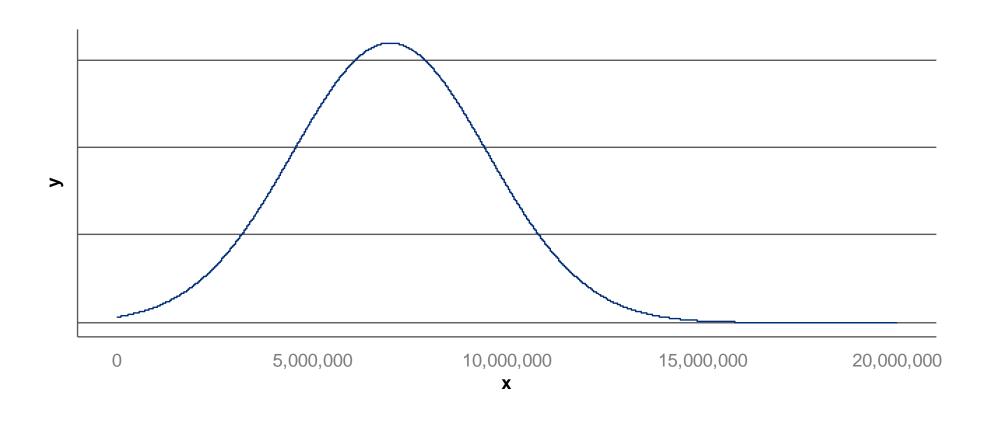
- Premium = \$10 million
- Expected loss ratio = 70%
- Reported claims at 12 months = \$4 million
- Paid claims at 12 months = \$1.5 million
- Reported development factor = 2.00
- Paid development factor = 3.00

Indications

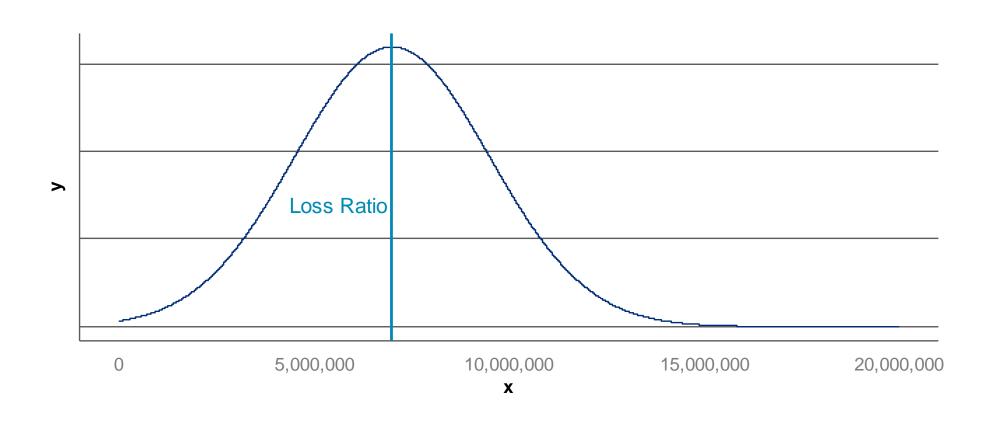
- Loss Ratio Method = \$7.0 million
- Reported Development = \$8.0 million
- Paid Development = \$4.5 million
- Reported B-F = \$7.5 million
- Paid B-F = \$6.2 million

_

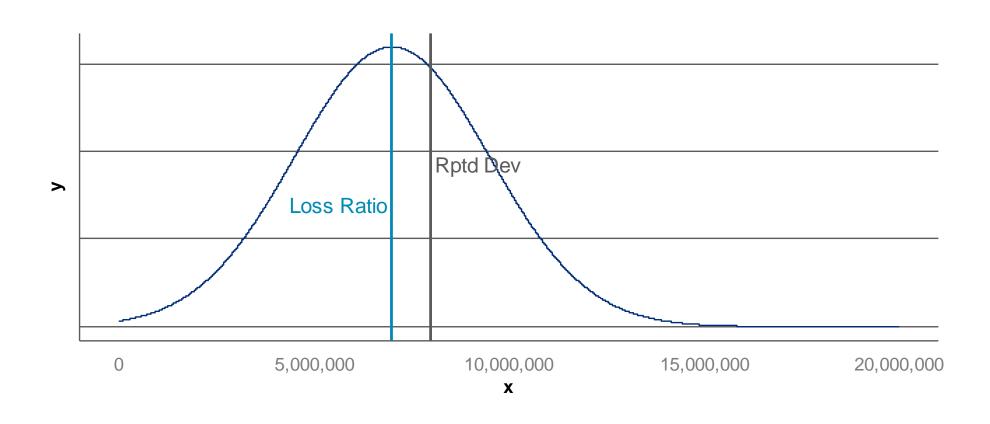
Estimated ultimate claims at 12 months



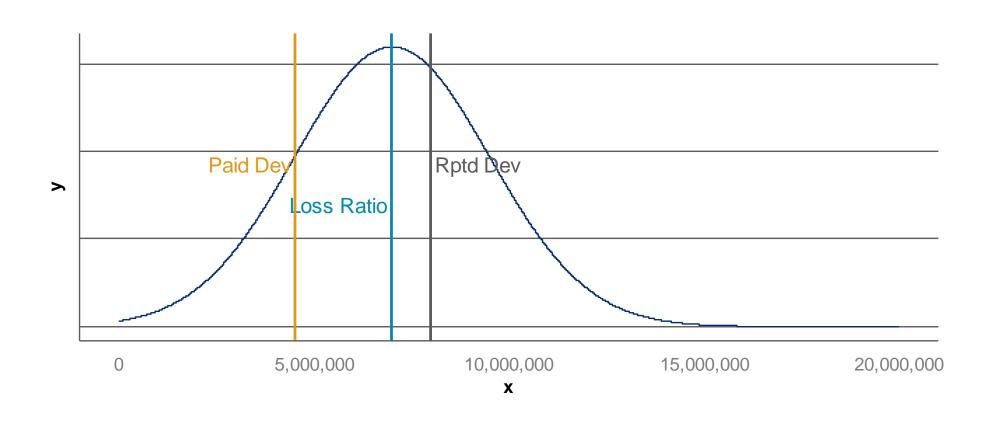
Estimated ultimate claims at 12 months



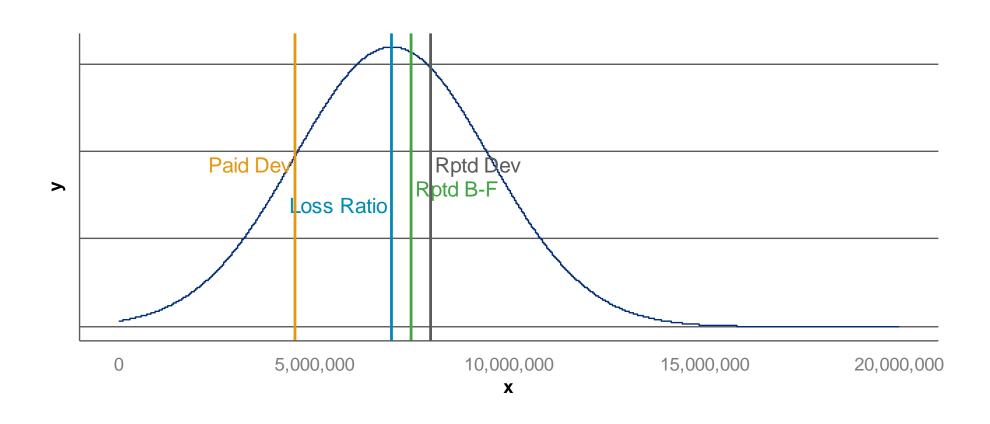
Estimated ultimate claims at 12 months



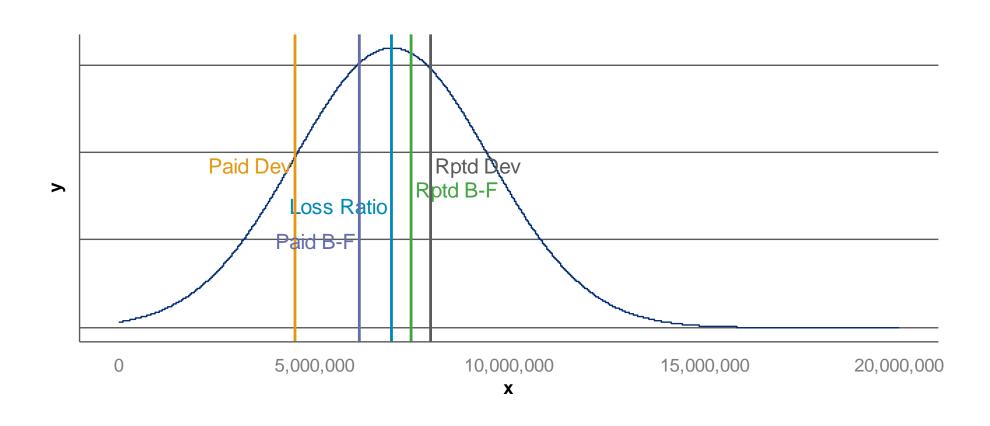
Estimated ultimate claims at 12 months



Estimated ultimate claims at 12 months



Estimated ultimate claims at 12 months

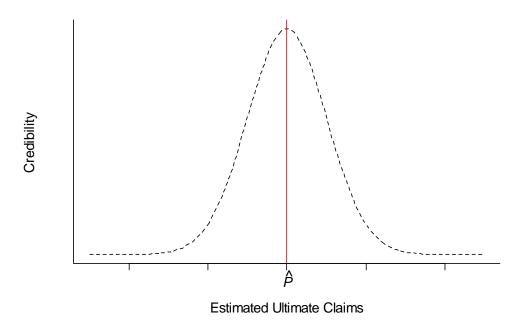


The Selected Estimate

- Generally a weighted average of indications
 - Explicit weighting
 - Implicit weighting
- Weights and significant digits
 - 20% (Paid Development) / 80% (Reported Development) weighted average (for example)
 - $-3 \times 10^{-1} / 7 \times 10^{-1}$ (one significant digit)
 - $-[2.5 \times 10^{-1} 3.5 \times 10^{-1}] / [7.5 \times 10^{-1} 6.5 \times 10^{-1}]$
 - 20% * \$4.5 million + 80% * \$8.0 million = \$7.3 million (\$5.8 million unpaid)
 - One significant digit: \$7.0 million (\$5.5 million unpaid)
 - Additional Error = \$0.3 million / \$5.5 million = 5.4%
 - What if you advised management that the range was +/- 10%?

The Selected Estimate

- How do actuaries develop the weights?
 - The actuarial judgment function



2 Proposed Approach

Is there another way to combine the estimates

- Each method represents a competing estimator
- Each estimator is (assumed) unbiased
- Credibility?
 - Terminology
 - Measurement
- Simplifying assumptions
 - Symmetric distribution centered around 0: for simplicity, we use only the positive domain of x and consider both tails of the distribution of x_1
 - -F and f to represent the distribution and density functions, respectively, of the residuals

Two Method Example

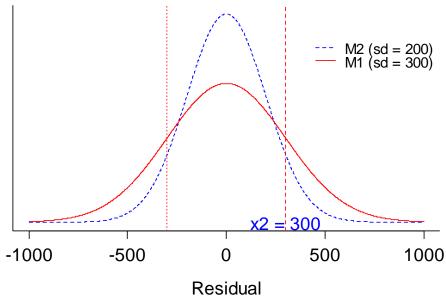
- Paid chain-ladder (Method 1, M₁)
- Reported incurred chain-ladder (Method 2, M₂).
- The credibility of the reported incurred chain-ladder is the probability that:
 - the error of M_2 (random variable denoted X_2) is less than or equal to
 - the error of M_1 (random variable denoted X_1)

• So for any $X_2 = x_2$ (where x_2 is an observation of X_2),

we have the following possibilities:

1. $|X_1| < |x_2|$ (Credibility to Method 1)

2. $|X_1| > |x_2|$ (Credibility to Method 2)



ι3

The Credibility Model

- Math Speak: $Z_2 \div 2 = \int_0^\infty 2[1 F_1(x)]f_2(x)dx$
- English
 - Over the domain of positive values of x: \int_0^∞
 - the credibility assigned to Method 2: Z₂
 - is the probability that the error of Method 1 is greater than $x: (1 F_1(x))$
 - or less than -x: $(1 F_1(x))$ by symmetry
 - for all $X_2 = x : f_2(x)dx$
 - The 2 inside the integral provides consideration for both:
 - values of $X_1 < -x_2$
 - values of $X_1 > +x_2$

For example, if $x_2 = 100$, we would assign credibility to Method 2 for

- $X_1 > 100$ and
- $-X_1 < -100$
- The 2 on the left-side is necessary as our limits of integration only consider one-half the domain of possible x values.

14

The Credibility Model

Algebraic Simplification

$$Z_2 \div 2 = \int_0^\infty 2[1 - F_1(x)]f_2(x)dx$$
$$Z_2 = 2 - 4 \int_0^\infty F_1(x)f_2(x)dx$$

- The Limiting Case: Method 1 has no error
- But how do we calculate this?
 - Option 1: Numerical Integration (examples provided with paper on CAS website)
 - Option 2: Simulation (R, @Risk) (sample R code provided in paper)
 - Option 3: Computational integration (R, SAS?) (sample R code provided in paper)

Assumptions and Generalization

- Assumptions / Implementation Issues
 - Normality of Residuals: Rehman & Klugman; Central Limit Theorem
 - Calculation of Errors: Look at history, testable relative uncertainty estimates
 - Management's Recorded Estimate: Just another method
- Generalization for n methods

$$Z_2 \div 2 = \int_0^\infty 2[1 - F_1(x)] f_2(x) dx$$

$$Z_i = \int_0^\infty 2^n \left\{ \begin{bmatrix} 1 - F_1(x) \end{bmatrix} \cdots \begin{bmatrix} 1 - F_{i-1}(x) \end{bmatrix} \right\} f_i(x) dx$$

- Remove / relax simplifying assumptions: See Appendix
 - Symmetry
 - Centered at 0

Acknowledgements

Acknowledgements

- Call Paper Program Subcommittee
 - Marc Pearl
 - Nina Gau
 - Jennifer Wu
 - John Alltop
- CAS E-Forum
 - Mark Goldburd
- Oliver Wyman Colleagues
 - Jason Shook
 - Alexandra Taggart
 - Evelyn Shen

Contact Information

Rajesh Sahasrabuddhe Oliver Wyman Three Logan Square 1717 Arch Street, Suite 1100 Philadelphia, PA 19103

Phone: +1 215 246 1028 Mobile: +1 610 209 0143

rajesh.sahasrabuddhe@oliverwyman.com

rajesh1004@gmail.com