Predictive Modeling - Next Steps in Pricing

Bill Carpenter, FCAS, MAAA

william.carpenter@milliman.com

CAMAR Fall Meeting December 4, 2008

Our Agenda

Evolution of Predictive Modeling

- Modeling claim propensity
- Incorporating rate comparisons

Bill Carpenter

State of the Art – Price Optimization

Thomas Bayley

A Regulatory Perspective

Chuck Romberger

What is Predictive Modeling?

 Mathematical and statistical techniques to predict future outcomes based on data (variables) at the individual policy level

How is it used in insurance?

- Underwriting both new business and renewal
- Pricing / tiering
- Customer acquisition
- Customer service
- Claims, e.g. fraud detection
- Customer Retention
- Agency Management

Once Upon a Time

The expense and/or lack of processing power and electronic storage did not support large scale predictive modeling

	<u>1980</u>	<u>1985</u>	<u>1990</u>	<u>1995</u>	<u>2000</u>	<u>2008</u>
Storage Cost per Megabyte	\$190	\$ 70	\$ 10	\$0.90	\$0.05	<\$0.001
Microprocessor Speed, MHz	5-8	16	33	120	800	3,200

Once Upon a Time ...

- Easily accessible internal transaction level data did not exist
- The ability to append external data did not exist
- Management had to rely on instinct or "gut" feel
- Data was an "after the fact" verification of the accuracy of those intuitions

What Changed

- Predictive modeling in the form of credit scoring dates back to the 1960s in the banking industry
 - An automated decision process was a must for the booming credit card business
- In the 1980s, other predictive modeling applications gained wide acceptance in direct marketing
- By the late 1980s, the first application of the extensive credit database started to be applied to auto insurance

Steps in Predictive Modeling

- Data Mining: knowledge finding in large databases
 - Data exploration techniques (some brute force)
 - e.g. discover strength of credit variables
- Model Building: apply statistical techniques (like regression) after data mining phase is completed.
 - Quantify & synthesize relationships found in data mining exercise
 - e.g. build a credit model

Data Mining: Sources of Data

- Moved from solely credit score to 1,000s of variables
- Company's internal data
 - Policy-level records
 - Loss & premium transactions
 - Agent database
 - Billing transactions (e.g. late payments, payment method ...)
 - Vehicle information
- Externally purchased data
 - Credit, D&B, ...
 - CLUE, MVR
 - Census
 - Marketing datasets
 - Geo-coding

-

Data Mining: Exploring the Data

- 1-way analyses of predictive variables
- Data Visualization
 - E.g. Decision trees, relationship maps ...
- Create new predictive variables
 - Opportunity to incorporate underwriting judgment
 - E.g. # drivers vs. # vehicles
 - E.g. single vehicle / liability only ...

Data Mining

- Key step to building a successful model
- Key step in getting "buy-in" from others in your organization
 - Use this step to communicate and get input from others that will create the "buy-in" when you get to model building
- Can yield significant benefits, even before you get to the model building state
 - Insight tool (complete segmentation, lift model)

Segmentation Lift Curve

Lift Curve Example

11

Building Models – Important Concepts

- Scoring engine is a form of predictive model
- Not all scoring models are credit models
 - Models can be built independent of outside credit data (in fact, this is required in some states)
- Why build a scoring model after data mining
 - Going for further lift
 - Ease of application ... compare a score to a set of rules, speeding up and enforcing consistency of decision making

Traditional Application

- Scoring engine: formula that segments the policy base by relative profitability
- An equation f() of several predictive variables
 - Both linear and non-linear flavors
- The result is a continuous range of scores

• $score = f(X_1, X_2, ..., X_N)$

Elements of a Scoring Engine $f(X_1, X_2, ..., X_N)$

The scoring function or algorithm

- Regression/GLM
- Decision Trees/MARS
- Neural Networks
- Test several
- The inputs X_1, X_2, X_N : as important as the algorithm
 - A large part of the process consists of variable creation and selection ... the data mining steps
 - Not unusual to generate hundreds of variables
 - Examine correlations / eliminate redundant, weak, poorly distributed variables

Testing the Results

Important to divide data (randomly) into 3 pieces

- **Training** data: to fit the model
- Test data: create a lift curve (an iterative process until you are happy with the resulting model)
- Validation data: to produce a final lift curve, giving an unbiased estimate of future performance

Lift Curve

- Lift = highest / lowest segment (usually deciles for models)
- Lift = segmentation power of your model

Summary of the Predictive Model Process

- Organize your data
- Data mining
 - Intense process to identify the candidate variables to go into your predictive model
 - Pare variables down to a manageable set
- Modeling building
 - Try several different models / algorithms
 - Test different combinations of variables
- Test the model
 - Lift curves
 - Hold back data for testing
 - Key step in getting "buy-in" from your users
- Monitor performance
 - Distribution of scores over time, predictive performance, usage of model...
 - Plot model maintenance / update strategy

Incorporating Competitive Pricing Data

- So far ... our discussion has focused on modeling claim propensities, usually measured as loss ratios or pure premiums
- But ... focusing on profitability is only half on the Portfolio Management mantra of "profitable growth"
- Modeling had to evolve ... the first surrogate for growth was competitive position
- The next step in the evolution of modeling has been to combine these claim propensity indications with competitive indications

Profit / Competitiveness Analysis

Achieving Profitable Growth

- Comparative rate analysis alone is no guarantee for achieving profitable growth
- Another tool is needed to know what competitive position to establish for different segments in order to achieve desired growth rates

- Price optimization

Some Evidence That We've Entered a New Stage

Why The Increase in Advertising Spending?

- Back to Those Savings Comparisons
- Liberty Mutual \$328 a year
- AIG Auto \$366 a year
 - Switch from State Farm \$331
 - Switch from GEICO \$375
 - Switch from Allstate \$443
- Esurance \$550 a year
- GEICO over \$500 a year
- Hartford AARP \$303 a year

Which Company Do You Want To Be ??

Which Company Gets Your Business?

<u>Savings</u>	Company (description)
\$500	Brand X (unbranded)
\$425	"I Heard of Them, Don't Know Much About Them" Company
\$350	Gold Standard, A+ rated
\$300	Top Brand AND endorsed by your favorite affinity group
	I'm not switching

Why Might Esurance Make Branding a Priority?

- Still new ... aggressive growth plans
- But ... imagine if they could attract customers with only \$450 annual savings (instead of \$550)
 - More growth at the current price level
 - Vs. more profit (at a higher price) for the same growth level

Hmm ... sounds like an optimization challenge

Predictive Modeling - Next Steps in Pricing

For more information, see the CAS website for presentations from past Predictive Modeling seminars

www.casact.org/education/specsem/f2008/handouts/ www.casact.org/education/specsem/f2007/handouts/

