How to estimate Risk Adjustments under IFRS

2010 CAMAR Fall Meeting

Jessica Leong, FCAS, FIAA, MAAA Consulting Actuary December 2, 2010

-\$200

Best Estimate -\$100

+\$9,800

+\$9,800

-\$10,000

-\$10,000

Best Estimate -\$100

Risk Adjustments under IFRS

- 1. Liability Valuation under IFRS
- 2. Valuation from First Principles
- 3. Valuation using the Cost of Capital Method
- 4. Valuation using the Solvency II Method

Risk Adjustments under IFRS

- 1. Liability Valuation under IFRS
- 2. Valuation from First Principles
- 3. Valuation using the Cost of Capital Method
- 4. Valuation using the Solvency II Method

Best Estimate

Market Value

Market Value

Fair Value

Market Value

Fair Value (Exit Value)

Market Value

Fair Value (Exit Value)

?!*//@&&&

Market Value

Fair Value (Exit Value)

?!*//@&&&

"The risk adjustment represents the maximum amount that an insurer would rationally pay to be relieved of the risk that the ultimate fulfillment cash flows exceed those expected."

🗅 Milliman

Market Value

Fair Value (Exit Value)

?!*//@&&&

"The risk adjustment represents the maximum amount that an insurer would rationally pay to be relieved of the risk that the ultimate fulfillment cash flows exceed those expected."

C Milliman

How to Estimate Risk Adjustments under IFRS

2010

Risk Adjustments under IFRS

- 1. Liability Valuation under IFRS
- 2. Valuation from First Principles
- 3. Valuation using the Cost of Capital Method
- 4. Valuation using the Solvency II Method

What is the market value of a liability?

🗅 Milliman

What is the market value of a liability? Me You Asset Market Value

Discounted reserves = \$236 million

1st offer: \$236 m

Discounted reserves = \$236 million

1st offer: \$236 m

OO LOW

Li Milliman

Т

How much Capital?

Discounted reserves = \$236 million

1st offer: \$236 m

OO LOW 2nd offer: \$236 m + \$59 m

Т

Discounted reserves = \$236 million

1st offer: \$236 m

LOW

2nd offer: \$236 m + \$59 m

HIGH

Milliman

TOO

TOO

Discounted reserves = \$236 million

1st offer: \$236 m

LOW

2nd offer: \$236 m + \$59 m

HIGH

\$236 m + Risk Adjustment= Market Value

TOO

TOO

L Milliman

Future Cash Flows at each year-end

Future Cash Flows

Expected Future Net Cash Flow Table

Yr	Capital Release	Interest on Capital	Net Cash flow
	(1)	(2)	(3) = (1) + (2)
1			
2			
3			
35			

Yr	Capital Release	Interest on Capital	Net Cash flow
	(1)	(2)	(3) = (1) + (2)
1	?		
2			
3			
35			

Cashflow at t = 1

Capital Release

= Capital at time 0 less Capital at time 1

Cashf	low	at	t		1
-------	-----	----	---	--	---

Capital Release

= Capital at time 0 les		Capital at time 1
= \$59.0 m	less	99.5 th perc of Reserves <i>less</i> Reserves

Cashf	low	at	t		1
-------	-----	----	---	--	---

Capital Release

= Capital at time 0		less	Capital at time 1
=	\$59.0 m	less	99.5 th perc of Reserves <i>less</i> Reserves
=	\$59.0m	less	\$52.3m

Cashflow at t = 1

Capital Release

= C	apital at time 0	less	Capital at time 1
=	\$59.0 m	less	99.5 th perc of Reserves <i>less</i> Reserves
=	\$59.0m	less	\$52.3m

= \$6.7m

Yr	Capital Release	Interest on Capital	Net Cash flow
	(1)	(2)	(3) = (1) + (2)
1	\$6.7		
2			
3			
35			

Yr	Capital Release	Interest on Capital	Net Cash flow
	(1)	(2)	(3) = (1) + (2)
1	\$6.7	?	
2			
3			
35			

Cashflow at time 1

Interest on Capital

= Capital at time 0 x Risk free rate

59.0m x 4%

= \$2.3m

Page 44

\$

Yr	Capital Release	Interest on Capital	Net Cash flow
	(1)	(2)	(3) = (1) + (2)
1	\$6.7	\$2.3	
2			
3			
35			

Yr	Capital Release	Interest on Capital	Net Cash flow
	(1)	(2)	(3) = (1) + (2)
1	\$6.7	\$2.3	\$9.0
2			
3			
35			

Yr	Capital Release	Interest on Capital	Net Cash flow
	(1)	(2)	(3) = (1) + (2)
1	\$6.7	\$2.3	\$9.0
2	\$5.9	\$2.1	\$8.0
3			
35			

Yr	Capital Release	Interest on Capital	Net Cash flow
	(1)	(2)	(3) = (1) + (2)
1	\$6.7	\$2.3	\$9.0
2	\$5.9	\$2.1	\$8.0
3			
34			\$0.3
35			\$0.3

Yr	Net Cash flow	Discounted Net Cash flow at RRoC
1	\$9.0	= \$9.0 x 1.10^-1 = \$8.2
2	\$8.0	= \$8.0 x 1.10^-2 = \$6.6
34	\$0.3	= \$0.3 x 1.10^-34 = \$0.0
35	\$0.3	= \$0.3 x 1.10^-35 = \$0.0
Buyer's Investment =		= \$35.0 m

L Milliman

🕻 Milliman

Selling you my GL book

1st offer: $$236 \text{ m} \rightarrow \text{TOO LOW}$ 2nd offer: $$236 \text{ m} + $59 \text{ m} \rightarrow \text{TOO HIGH}$ 3rd offer: \$236 m + \$24 m

Selling you my GL book

1st offer: \$236 m → TOO LOW 2nd offer: \$236 m + \$59 m → TOO HIGH 3rd offer: \$236 m + \$24 m →UST RIGHT

Capital at time 0 = Risk Adjustment + What the Buyer will Invest

Capital at time 0 = Risk Adjustment + What the Buyer will Invest

Risk Adjustment = Capital(0) - What the Buyer will Invest

Capital at time 0 = Risk Adjustment + What the Buyer will Invest

Risk Adjustment = Capital(0) - What the Buyer will Invest

Risk Adjustment = Capital(0) – (Discounted capital runoff and interest on capital)

Capital at time 0 = Risk Adjustment + What the Buyer will Invest

Risk Adjustment = Capital(0) - What the Buyer will Invest

Risk Adjustment = Capital(0) – (Discounted capital runoff and interest on capital)

$$\text{Risk Adjustment} = Capital_0 - \sum_{g=0}^{n} \frac{(Capital_g - Capital_{g+1})}{(1 + Capital_g \times r_f)}$$

t = 1, $Capital_0 = 100 $r_f = 4\%$, CoC = 10%

$$\text{Risk Adjustment} = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t+1})}{(1 + Capital_t \times r_f)}$$

L Milliman

t = 1, $Capital_0 = 100 $r_f = 4\%$, CoC = 10%

Risk Adjustment =
$$Capital_0 - \sum_{t=0}^n \frac{(Capital_t - Capital_{t+1})}{(1+Capital_t \times r_f)}$$

= $100 - \left(\frac{100 + 100 \times 4\%}{1 + 10\%}\right)$

t = 1, $Capital_0 = 100 $r_f = 4\%$, CoC = 10%

$$Risk Adjustment = Capital_0 - \sum_{e=0}^n \frac{(Capital_e - Capital_{e+1})}{(1 + Capital_e \times r_f)}$$
$$= 100 - \left(\frac{100 + 100 \times 4\%}{1 + 10\%}\right)$$

= 100 - 94.54

t = 1, $Capital_0 = 100 $r_f = 4\%$, CoC = 10%

Risk Adjustment =
$$Capital_0 - \sum_{e=0}^{n} \frac{(Capital_e - Capital_{e+1})}{(1 + Capital_e \times r_f)}$$

= $100 - \left(\frac{100 + 100 \times 4\%}{1 + 10\%}\right)$
= $100 - 94.54$

= 5.45

L Milliman

Risk Adjustments under IFRS

- 1. Liability Valuation under IFRS
- 2. Valuation from First Principles
- 3. Valuation using the Cost of Capital Method
- 4. Valuation using the Solvency II Method

Cost of Capital

1.Calculate capital required at each year-end

2. Multiply by the cost of capital less the risk-free rate

3.Discount at the cost of capital and sum.

Cost of Capital

1.Calculate capital required at each year-end

2. Multiply by the cost of capital less the risk-free rate

3.Discount at the cost of capital and sum.

Risk Adjustment =
$$\sum_{t=0}^{n} \frac{Capital_{t} \times (CoC - r_{f})}{(1 + CoC)^{t}}$$

Simple Example – Cost of Capital Method t = 1, $Capital_0 = \$100$ $r_f = 4\%$, CoC = 10%Risk Adjustment $= \sum_{r=0}^{n} \frac{Capital_t \times (CoC - r_f)}{(1 + CoC)^t}$

Simple Example – Cost of Capital Method

$$t = 1$$
, $Capital_0 = \$100$ $r_f = 4\%$, $CoC = 10\%$
Risk Adjustment $= \sum_{r=0}^{n} \frac{Capital_r \times (CoC - r_f)}{(1 + CoC)^r}$
 $= \frac{100 \times (0.10 - 0.04)}{1.10}$

Simple Example – Cost of Capital Method

$$t = 1$$
, $Capital_0 = \$100$ $r_f = 4\%$, $CoC = 10\%$
Risk Adjustment $= \sum_{r=0}^{n} \frac{Capital_r \times (CoC - r_f)}{(1 + CoC)^r}$
 $= \frac{100 \times (0.10 - 0.04)}{1.10}$
 $= 5.45$

Equivalence of Risk Adjustment Formulas

$$Capital_{0} - \sum_{t=0}^{n-1} \frac{(Capital_{t} - Capital_{t+1}) + Capital_{t} \times r_{f}}{(1 + CoC)^{t+1}}$$

Derivation from First Principles

$$\sum_{t=0}^{n-1} \frac{Capital_t \times (CoC - r_f)}{(1 + CoC)^{t+1}}$$
Cost of
Capital
Method

Risk Adjustments under IFRS

- 1. Liability Valuation under IFRS
- 2. Valuation from First Principles
- 3. Valuation using the Cost of Capital Method
- 4. Valuation using the Solvency II Method

Solvency II Method

- Solvency II
- 1.Calculate SCR at each year-end
- 2.Multiply by the cost of capital less the riskfree rate
- 3.Discount at the risk-free rate and sum.

Solvency II Method*

Solvency II

1.Calculate **SCR** at each year-end

2.Multiply by the cost of capital less the riskfree rate

3.Discount at the **risk**-**free** rate and sum.

Cost of Capital

1.Calculate Capital at each year-end

2.Multiply by the cost of capital less the riskfree rate

3.Discount at the **cost** of capital and sum.

Solvency II

Cost of Capital

$$\sum \frac{SCR \times (CoC - r_f)}{(1 + r_f)} \qquad \sum \frac{Capital \times (CoC - r_f)}{(1 + CoC)}$$

Simple Example – Solvency II

t = 1, $Capital_0 = 100 $r_f = 4\%$, CoC = 10%

$$RA = \frac{SCR \times (CoC - r_f)}{1 + r_f}$$

Simple Example – Solvency II

t = 1, $Capital_0 = 100 $r_f = 4\%$, CoC = 10%

$$RA = \frac{SCR \times (CoC - r_f)}{1 + r_f}$$

 $RA = \frac{(\$100 - RA) \times (0.10 - 0.04)}{1 + 0.04}$

Simple Example

t = 1, $Capital_0 = 100 $r_f = 4\%$, CoC = 10% $RA = \frac{SCR \times (CoC - r_f)}{1 + r_f}$ $RA = \frac{(\$100 - RA) \times (0.10 - 0.04)}{(\$100 - 8)}$ 1 + 0.04 $RA\left(1+\frac{0.06}{1.04}\right) = \frac{\$100 \times 0.06}{1.04}$

Simple Example

t = 1, $Capital_0 = 100 $r_f = 4\%$, CoC = 10% $RA = \frac{SCR \times (CoC - r_f)}{1 + r_f}$ $RA = \frac{(\$100 - RA) \times (0.10 - 0.04)}{(\$100 - 8)}$ 1 + 0.04 $RA\left(1+\frac{0.06}{1.04}\right) = \frac{\$100 \times 0.06}{1.04}$ RA = 5.45

Solvency II

$$\sum \frac{SCR \times (CoC - r_f)}{(1 + r_f)} =$$

Cost of Capital $\sum \frac{Capital \times (CoC - r_f)}{(1 + CoC)}$

Solvency II

$$\sum \frac{SCR \times (CoC - r_f)}{(1 + r_f)} =$$

Cost of Capital

$$\sum \frac{Capital \times (CoC - r_f)}{(1 + CoC)}$$

- 1. Liability Valuation under IFRS
- 2. Valuation from First Principles
- 3. Valuation using the Cost of Capital Method
- 4. Valuation using the Solvency II Method

- 1. Liability Valuation under IFRS
- 2. Valuation from First Principles
- 3. Valuation using the Cost of Capital Method
- 4. Valuation using the Solvency II Method

- 1. Liability Valuation under IFRS
- 2. Valuation from First Principles
- 3. Valuation using the Cost of Capital Method
- 4. Valuation using the Solvency II Method

- 1. Liability Valuation under IFRS
- 2. Valuation from First Principles
- 3. Valuation using the Cost of Capital Method
- 4. Valuation using the Solvency II Method

Required

- 1. Liability Valuation under IFRS
- 2. Valuation from First Principles
 3. Valuation using the Cost of Capital Method
 4. Valuation using the Solvency II Method

- 1. Liability Valuation under IFRS
- 2. Valuation from First Principles
 3. Valuation using the Cost of Capital Method
 4. Valuation using the Solvency II Method

Jessica Leong, FCAS, FIAA, MAAA Consulting Actuary

Milliman One Penn Plaza, 38th Floor New York, New York

+1-646-473-3117

