
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Overview

- Some macro indicators of economic value of $\qquad$ risk classification
- Recognizing marketplace realities in measuring
$\qquad$ value
- A multi-year Net Present Value framework for model evaluation
- Some observations about model lift $\qquad$ comparisons
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
 $\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Lessons Learned

- Looking Backward
$\qquad$
- Pricing strategy was key driver for market success
- Early adopters gained significant competitive advantage
$\qquad$
- Evidence of varying risk tolerances among insurers
$\qquad$
- Looking Forward
- Competitive pressures continue to mount $\qquad$
- Pricing methodologies and data resources are evolving rapidly $\qquad$
- Significant risk for underperforming strategies
$\qquad$
$\qquad$


## Our Challenge

- Enhanced rate segmentation can add significant value

BUT $\qquad$

- Increased segmentation has a cost
- How do we evaluate the value vs. cost?
- How do we make the case to decision makers?


How Some Actuaries Make the Case
to Increase Segmentation

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## How Some Actuaries Make the Case

to Increase Segmentation

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Measuring the Value
of Rate Segmentation

- Measuring "Lift"
$\qquad$
- Value-based measures
- Comparing Costs to Benefits
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## What do we mean by "Lift"

- Accuracy of prediction
- Relative to current prediction (sometimes)



## Measuring Lift

- Usually involves some sort of data summarization
- Helps to remove noise from the data
- Measure against a hold out data set
- Helps avoid overfitting the data
- "Lift" is not the same as "Goodness of Fit"
- Fitting the data is not as important as predicting the mean
$\qquad$ accurately


## Fit vs. Lift - An Example

- Two different class plans

Continuous Model is much more accurate and shows lift
$\qquad$ over Discrete Model


$\qquad$
$\qquad$
$\qquad$
$\qquad$

- Deviance measure improves only 0.1\%


## Typical Lift Measures

- Prediction Mean Square Error
- Error is going to be high on individual losses, but directionally correct
- Lift Chart "Top to Bottom" Ratio
- Ignores lift in the middle $\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$


## Gini Index

- Measures accuracy of rank ordering
- Directly considers entire range of predictions $\qquad$
- Can be used to compare different predictions
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Drawing the Lorenz Curve

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Drawing the Lorenz Curve

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


Drawing the Lorenz Curve

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Lorenz Curve and Gini Index

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## More about Gini Index <br> - Can perform statistical tests using Gini index <br> - Identify significant improvements in rank orderings <br> - Reference: <br> - Working paper available on Jed Frees' website (University of Wisconsin) <br> - "Summarizing Insurance Scores using Gini Index"

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Demonstrating Value

- So far, all measures have dealt with statistical $\qquad$ value
- Basis for model building decisions
$\qquad$
- Need to introduce a framework to measure
$\qquad$ economic value
- Basis for model implementation decisions $\qquad$
$\qquad$
$\qquad$
$\qquad$


## How Some Actuaries Make the Case

to Increase Segmentation


## What's wrong with this dialog?

- Focus only on implementation costs
- In a competitive marketplace, there is a cost to doing nothing $\qquad$
- Lost business, lost revenue, and increasing cost of remaining policies $\qquad$
- Short-term view of revenue impact
- "Revenue Neutral" applies only to average premiums on current book
- There can be long-term revenue impacts $\qquad$
$\qquad$
$\qquad$


## How to make the case better

- Better projections of revenue and profit
$\qquad$ impacts
- Look beyond "Revenue Neutral" implementation
- Better consideration of marketplace dynamics
- Includes customer retention and competitive effects $\qquad$
- Demonstrate the value in monetary terms
$\qquad$


## The Discounted Cash Flow Trap


$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Illustration

- Two insurers write 3 policies each
- Laggard Insurance prices all policies in same class
- Luminary Mutual uses more accurate segmentation
- Both companies have same profit provisions ( $10 \%$ of premium) $\qquad$
$\qquad$
$\qquad$
Reference:
Cummings, "The Business Impact of Advanced Analytics",
Contingencies, Nov/Dec 2009, pp 46-51.

Illustration - Initial State


Illustration - After Year 1
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Value of Lift (VoL)

- Assume a competitor comes in and takes away the above average risks.
- Because of adverse selection, the new loss ratio will be higher than the current loss ratio.
- What is the value of avoiding this fate?
- \$400 in this illustration (\$240 expected profit vs. \$160 loss)
- Insurer could have spent additional \$400 for segmentation and been no worse off
- May express the VoL as a \$ per car year. $\qquad$
- \$133 per policy
$\qquad$
$\qquad$

Illustration - After Year 1
Laggard Insurance

| Actual <br> Expected <br> Cost | Policy <br> Premium | Profit |
| :---: | :---: | :---: |
| $\$ 800$ | $\$ 880$ | $\$ 80$ |
| $\$ 1,000$ | $\$ 880$ | $-\$ 120$ |
| $\$ 1,000$ | $\$ 880$ | $-\$ 120$ |
|  | Total | $-\$ 160$ |$\quad \rightarrow$| Actual <br> Expected <br> Cost | Policy <br> Premium | Profit |
| :---: | :---: | :---: |
| $\$ 600$ | $\$ 660$ | $\$ 60$ |
| $\$ 600$ | $\$ 660$ | $\$ 60$ |
| $\$ 800$ | $\$ 880$ | $\$ 80$ |
|  | Total | $\$ 200$ |

$\qquad$
$\qquad$
$\qquad$

New Policy Premium $=\mathbf{\$ 1 , 0 2 7}$ $\qquad$
$\qquad$

## Illustration - After Year 2

| Laggard Insurance |  |  | Luminary Mutual |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Actual <br> Expected Cost | Policy Premium | Profit | Actual Expected Cost | Policy Premium | Profit |
| \$1,000 | \$1,027 | \$27 | \$600 | \$660 | \$60 |
| \$1,000 | \$1,027 | \$27 | \$600 | \$660 | \$60 |
|  | Total | \$54 | \$800 | \$880 | \$80 |
| New Policy Premium = \$1,100 |  |  | \$800 | \$880 | \$80 |
|  |  |  |  | Total | \$280 |

Illustration - After Year 3

| Laggard Insurance |
| :---: | :---: | :---: |
| Actual <br> Expected <br> Cost Policy <br> Premium Profit <br> $\$ 1,000$ $\$ 1,100$ $\$ 100$ <br>  Total $\$ 100$ |

Luminary Mutual

| Actual <br> Expected <br> Cost | Policy <br> Premium | Profit |
| :---: | :---: | ---: |
| $\$ 600$ | $\$ 660$ | $\$ 60$ |
| $\$ 600$ | $\$ 660$ | $\$ 60$ |
| $\$ 800$ | $\$ 880$ | $\$ 80$ |
| $\$ 800$ | $\$ 880$ | $\$ 80$ |
| $\$ 1,000$ | $\$ 1,100$ | $\$ 100$ |
|  | Total | $\$ 380$ |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Illustration Summary

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Calculating NPV

| Laggard Insurance "Do Nothing" |  | Luminary Mutual"Invest in Segmentation" |  |
| :---: | :---: | :---: | :---: |
| Year | Profit | Year | Profit |
| 0 | \$240 | 0 | \$240 |
|  | - 5160 | 1 | \$200 |
| 2 | ${ }_{554}$ | 2 | 5280 |
| ${ }^{3}$ | \$100 | 3 | \$380 |
| NPV | 5207 | NPV | 5875 |
| NPV Calculated using a 15\% Discount Rate |  |  |  |
| 1150 |  |  |  |

Calculating NPV - Considering Marginal Costs


NPV of "Status Quo" Scenario = \$788

NPV Calculated using a 15\% Discount Rate

## Impact of Pricing Strategy

- Assessing the value of a pricing strategy
- Requires understanding of marketplace dynamics
- Requires projections of revenue, retention, and conversion $\qquad$ effects
- Basis of comparison is not "status quo" $\qquad$
- Project the "do nothing" scenario appropriately
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Relaxing the Assumptions

- Pricing
- What if Laggard tried to compete by lowering profit expectations? $\qquad$
- New Scenario
- Laggard uses 5\% profit provision $\qquad$
- Luminary keeps 10\% profit provision

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Relaxing the Assumptions

- Retention/Conversion
- Assume some policies will stay with current insurer despite price differences $\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Further Extensions

- Include multiple entities
- Refinement of conversion/retention effects in a competitive marketplace
$\qquad$
- More sophisticated pricing implementation strategies $\qquad$
- Projections are inherently uncertain
- Use stochastic simulation to project future scenarios under
$\qquad$ uncertainty
- Connection with Strategic Risk Management $\qquad$
$\qquad$
$\qquad$


