Handling High Dimensional Variables

Casualty Actuaries of the Northwest Shawna Ackerman, Pinnacle Actuarial Resources September 25, 2009

Discussion Topic

- The problem
- Techniques for handling high dimensions
- Comparisons of different techniques
- Conclusions

The Problem

- Data Analysis
 - Where am I penetrated in a state?
 - What tend to the be the characteristics of places where I am more highly penetrated?
- Action
 - Where am I under-penetrated?
 - What are my most likely scenarios for successful expansion?

ZIP Code Level Data

- Vehicle registration data
- Company vehicle counts
- Demographics at zip code level
 - Age
 - Population density
 - Persons per household
 - Marital status
 - Urban vs. rural
 - Education

The Problem With High Dimensional Variables

Data: High Dimensional Target and Independent Variables <u>Analysis</u>: Pulling useful information from high dimensional variables

Application: requires lower number of dimensions

- How do I understand trends in the data?
- How do I make this information actionable for the business units?

"We are drowning in information and starving for knowledge."

High Dimensional Target

ZIP Code

High Dimensional Explanatory Variables

Techniques for Handling High Dimension Variables

- Unsupervised
 - Clustering
 - Variable Clustering
 - Principal Component Analysis
- Supervised
 - Variable Selection
 - Traditional model development

Techniques for Handling High Dimension Variables

Supervised

- Model defined by target / outcome
- Clear measure of success

Unsupervised

- Describe data independent of outcome
- No direct measure of success

Clustering

- Divides a data set into groups of similar characteristics without regard to the target variable
- Groups created such that objects within each cluster are more closely related to one another than objects assigned to different clusters
- Key choice distance or dissimilarity measure
 - e.g., squared distance, absolute difference
- Goal is to reduce the number of levels

Cluster Distance Map

Penetration by Cluster Segment

Correlation of Cluster with Independent Variables

Variable Clustering

- Divides variables into clusters
- Resulting cluster is a linear combination of variables in cluster
 - First principal component
- Attempts to explain the maximum variance in the inputs
- Goal is to remove redundant variables

Variable Clustering

- Clustering rule select variable with minimum 1-R² ratio as cluster representative
- $1-R^2_{ratio} = 1-R^2_{own}/1-R^2_{nearest}$

Variable Clustering

Variable Clustering – Variance Explained

Principal Components Result

Unsupervised Learning Methods

• Focus

- Do not focus directly on the target (the dependent variables)
- Focus is on putting observations of like independent variables together
- If the independent variables are truly related to the dependent variable, then the clusters will be related to the dependent variables
- Potential Applications
 - Marketing targets, Claim fraud, Underwriting selections...

Identifying Anomalies -Segmentation

Differences in Clusters

Pain Clinic Treatment 0.450 0.410 А 0.400 v е 0.350 r 0.300 а g 0.250 L e а 0.182 0.200 g R 0.150 е 0.116 0.114 0.111 р 0.100 ο 0.062 0.058 0.041 0.042 0.035 r 0.050 t 0.000 1 2 3 4 5 6 7 8 9 10 Cluster

Variable Selection

- Calculate the correlation coefficient

 Exclude variables that do not meet specified criteria
- Forward stepwise regression sequentially adds variables that produce the largest incremental increase in explanatory power
- Process ends when no more variables can be added to produce a significant improvement

Variable Selection - Sequential Rsquared

Final Comparison

- Comparison of models based on five sets of inputs
 - Clustering
 - Variable clustering
 - Variable selection
 - Principal components
 - Raw inputs

Comparison of Final Models

Conclusions

- Using input variable information directly is generally preferable when building predictive models
- There are many cases when this is not feasible
 - Unknown target
 - Input variable with too many levels
 - Too many input variables
- Techniques for handling high dimensional variables still result in models that produce predictive results

References

- The Elements of Statistical Learning, Hastie, Tibshirani, Friedman
- Variable Reduction for Predictive Modeling with Clustering, Robert Sanche and Kevin Lonergan, CAS Winter Forum 2006
- SAS User Guide 9.2

Contact Info

Shawna Ackerman Pinnacle Actuarial Resources <u>shawnaa@pinnacleactuaries.com</u> (415) 692-0937

