<u>Economic Capital Modeling – Theory v. Practice</u>

James P. McNichols, Chief Actuary, Southport Lane; CEO AYA Consultants LLC

<u>Economic Capital Modeling – Theory v. Practice</u> **Presentation Overview**

- Intended for P&C actuaries.
- Emphasis on practical approaches.
- Assumes loss/exposure data is (reasonably) correct.
- Common thread will be capital modeling and the forward time horizon <u>does not exceed 1 year</u>.

<u>Economic Capital Modeling – Theory v. Practice</u> **Tabula Rasa Exercise**

What is the project?

Who is the pupil?

What is the goal?

Measure risk v Manage risk v Moving risk

3 C's (Credible/Consistent/Comprehendible)

- Book Value Relativities
- Directional Leverage Deltas
- Inflection Points Under Alternative Risk Structures

<u>Economic Capital Modeling – Theory v. Practice</u> **Financial Mathematics & Modeling Mantras**

Credibility is the prime directive.

- Bigger book is better than smaller.
- More diversity is better than less.
- More years of historical data is better than fewer.
- More alignment is better than less.
- More simulation trials in the tail does not necessarily improve predictive inferences

<u>Economic Capital Modeling – Theory v. Practice</u> **Financial Mathematics & Modeling Mantras**

Capital Charges are a function of Surplus Impairment.

CV measures are useful & analogous to Sharpe Ratios. All DRM projects are dripping with parameter risk. Physics envy exists (i.e., process risk...is what it is). There is no "loss pick" & "everyone is Bayesian". <u>Economic Capital Modeling – Theory v. Practice</u> Standard of Care Hierarchy

- 1 Deal junkies
- 2 Investment managers
- 3 Executives and lead underwriters
- 4 Board of Directors
- 5 Third party reviewers
 - Auditors
 - Regulators
 - Rating Agencies

<u>Economic Capital Modeling – Theory v. Practice</u> **P&C Insurance Company Key Risk Variables**

- 1. Premium Risk (aka U/W Risk)
- 2. Reserving Risk (e.g., Prior Years Effects)
- 3. Interest Rate Risk
- 4. Investment Risk Bonds
- 5. Investment Risk Stocks/Equities
- 6. Credit Risk Bonds
- 7. Credit Risks Reinsurance Recoveries

<u>Economic Capital Modeling – Theory v. Practice</u> **Underwriting Risk**

- Frequency & Severity PDF's
 - Best Fit does not always yield Best Selection
- Reinsurance Structural Needs/Tradeoffs
 Do not model Fac Treaty by Risk/other tradeoff
- Good Industry Benchmarks Available
- Embrace Bayesian Philosophy

<u>Economic Capital Modeling – Theory v. Practice</u> Underwriting Risk – Curve Fitting Example

🔨 DNIC TX WC - MetaRisk Fit v7.1.0 build 2336													
File Edit Fit Window Help													
i 🗋 📂 🛃 🕹 🖻 🛍 🤊 (° 🕨													
Inventory View	Severi	ty Analysis (\\Claim S	et\Filter\Severity	Analysis)									
	. i 🕨 🕯		🖋 🔍 🔍 🔀	1									
DNIC TX WC	Sever	ity Table Severity Li	st CDF PDF	Hazard	Function Mean E	xcess QQ PP	Implied	d Count Excess					
 Claim Set (646 claims) Filter - (Unfiltered) 		werse Paralogistic			erse Transformed G	amma 🔗		rse Weihull			120002		*
Severity Analysis	V 1						V IIVC			V LOGS	4		
Frequency Analysis	Alp	ha 1.5	0.913	Alpha	1.5	2.029	Alpha	1.5	0.5618	Alpha –	1	1	
	The	ta 7,001	4,934	Theta	12,532	1.95148E+12	Theta	07,140	1,/19	Tau	1	1	
				Tau	1	0.1346							
			6 702 84		Search	6 760 74			6 700 56			NaN	
		Score	0,735.04		Score	0,703.74		Score	0,750.50		Score	IVAIV	
Properties for Lognormal (Converged)	V U	oglogistic	a	🗸 Log	normal	I	V MBE	BEFD		Vori	mal	a	
	Alp	ha 1.5	0.8697	Mu	9.007	8.401	В	1.5	1.495	Mu	25,064	27,543	
Output Parameters ^	The	ta 10,364	4,212	Sigma	1.498	1.942	G	2	2.02	Sigma	72,767	67,679	
Value Std Dev CV							Theta	1,220,615	1,220,615				
Mu 8.401 0.0764 0.009094													E
Sigma 1.942 0.05401 0.02782		Score	6,791.28		Score	6,772.13		Score	8,949.84		Score	10,836.69	
	P	aralogistic	0	🔽 Pare	eto T	0	Pow	er	8	🔽 Simp	ole Pareto	0	
Correlations	Alp	ha 1.5	0.8124	Alpha	1.5	1.304	Theta	1,830,923	1,830,923	Alpha	1.5	0.119	
Sigma	The	ta 15,324	3,492	Theta	12,532	8,121	Beta	0.0	0.0				
Mu 0.00 %				Tau	1	0.5239							
Unconditional Statistics ^		Score	6,790.67		Score	6,784.24		Score	NaN		Score	7,447.72	_
Modal Integrated													· · · · · · · · · · · · · · · · · · ·
Mean 29,314 29,660			r			PDF	Er	mpirical — Logno	ormai	Francisco			Maria
Standard Deviation 190,859 202,323	100 9				70 %	FUF				runction		1,800,000	
	80 %				60 %			200 %				1,600,000	
Conditional Statistics ^	70 9 60 9				40 %			150 %				1,200,000	
Modal Integrated	50 9 40 9				30 %			100 %				800,000	
Mean 29,314 29,660	30 9 20 9				20 %			50 %				400,000	
Standard Deviation 190,859 202,323	10 9 0 9				0 %			0%				200,000	
	-	0 200 400 600 800.	1,0 1,2 1,4 1,	o 1,8	0 200 400	oud 800 1,0 1,2	1,4 1,	n 1,8 0	200 400 600 80	u 1,0 1,	z 1,4 1,6 1,8	0 20	40 60 80 1,0 1,2 1,4 1,6 1,8

<u>Economic Capital Modeling – Theory v. Practice</u> **P&C Industry (U.S.) Aggregate U/W Risk Benchmarks**

Coefficient of Variation of Gross Loss Ratio Accident Years 1992 - 2010

ALL RISK	
Private Passenger Auto	14%
Auto Physical Damage	16%
Commercial Auto	24%
Workers Compensation	27%
Warranty	29%
Medical PL - Occurrence	33%
Commercial Multi Peril	34%
Other Liability - Occurrence	37%
Special Liability	40%
Other Liability - Claims Made	41%
Medical PL - Claims Made	42%
Products Liability - Occurrence	47%
Homeowners	48%
Other	53%
Reinsurance - Liability	67%
Fidelity & Surety	69%
International	70%
Reinsurance - Property	85%
Reinsurance - Financial	94%
Products Liability - Claims Made	101%

<u>Economic Capital Modeling – Theory v. Practice</u> **P&C Industry (U.S.) Aggregate U/W Risk Benchmarks**

US Market Risk Parameters

Coefficient of Variation of Gross Loss Ratio (1992 - 2010)

All Risk		No Underwriting Cycle Risk		Δ
Private Passenger Auto	14%	Private Passenger Auto	13%	1%
Auto Physical Damage	16%	Auto Physical Damage	15%	1%
Commercial Auto	24%	Commercial Auto	18%	6%
Workers Compensation	27%	Workers Compensation	18%	9%
Warranty	29%	Warranty	31%	-2%
Medical PL - Occurrence	33%	Medical PL - Occurrence	32%	1%
Commercial Multi Peril	34%	Commercial Multi Peril	27%	7%
Other Liability - Occurrence	37%	Other Liability - Occurrence	25%	12%
Special Liability	40%	Special Liability	30%	10%
Other Liability - Claims Made	41%	Other Liability - Claims Made	27%	14%
Medical PL - Claims Made	42%	Medical PL - Claims Made	30%	12%
Products Liability - Occurrence	47%	Products Liability - Occurrence	33%	14%
Homeowners	48%	Homeowners	41%	7%
Other	53%	Other	50%	3%
Reinsurance - Liability	67%	Reinsurance - Liability	45%	22%
Fidelity & Surety	69%	Fidelity & Surety	53%	16%
International	70%	International	55%	15%
Reinsurance - Property	85%	Reinsurance - Property	55%	30%
Reinsurance - Financial	94%	Reinsurance - Financial	59%	35%
Products Liability - Claims Made	101%	Products Liability - Claims Made	48%	53%

Economic Capital Modeling Constraints

- 1 year forward time horizon
- 1:200 stress level events

Underwriting Risk (Example)

- Frequency
- Severity
- Aggregate claims distribution
- Stochastic (i.e., Monte Carlo) simulated outcomes
- Stress level thresholds
- Economic capital contribution

Underwriting Risk – Example (Corp WC-Only) Stochastic Simulation (aka Monte Carlo)

Underwriting Risk – Example (Corp WC-Only)

Underwriting Risk – Example (Corp WC-Only)

Economic Capital Modeling Results (U/W Risk variable only)

- Stochastic Simulation of each LOB variable at 1:200 stress

•	Work Comp - Corp	\$ 5.3 MM
•	Work Comp - Retail	2.1 MM
•	Gen Liab Corp & Retail	1.6 MM
•	Auto Liab Corp & Retail	1.0 MM
•	Auto PD - Corp & Retail	0.5 MM
•	Retail Property	2.0 MM
•	Sum	\$12.5 MM

Required Economic Capital => \$8.5 MM*

*does not equal the sum of the parts due to portfolio effects

(i.e. diversification credit)

<u>Economic Capital Modeling – Theory v. Practice</u> **Reserving Risk**

- Traditional Methods if for GAAP Balance Sheet
- Stochastic Methods if for Capital Modeling
- GLM Methods if Pro Forma Planning
- ALL Methods if for M&A
- Good Industry Benchmarks Available
- Embrace Bayesian Philosophy

<u>Economic Capital Modeling – Theory v. Practice</u> **P&C Industry (U.S.) Reserve Risk Benchmarks; CV of ULT Development of a Single Accident Year**

U.S. Industy Aggregate - AY's (1980 - 2002) NET of Reinsurance

Statistic = actual final reserve / initial reserve

Line of Business	<u>Mean</u>	<u>CV</u>
Private Passenger Auto	0.95	7%
Homeowners	0.99	9%
Commercial Auto Liability	1.06	12%
Commercial Multi-Peril	1.07	12%
Workers Compensation	1.06	17%
Products Liability	1.14	25%
General Liability	1.12	27%
Medical Professional Liability	1.03	29%

<u>Economic Capital Modeling – Theory v. Practice</u> Interest Rate Risk

- ESG approach v. Modular approach
- Practical Actuarial Alternatives

Typical model of interest rate dynamics in the form:

 $\Delta \mathbf{r}_t = \mathbf{k}(\mathbf{b} - \mathbf{r}_t) \Delta t + \sigma \mathbf{r}_t^{\gamma} \Delta \mathbf{Z}_t$

 $\gamma = 0$; Vasicek model where changes are normally distributed $\gamma = 1$; RiskMetrics model which yields lognormal distribution $\gamma = 0.5$; Cox, Ingersoll, Ross model

<u>Economic Capital Modeling – Theory v. Practice</u> Interest Rate Risk

Practical Actuarial Alternatives (continued)

- Based upon historical empirical market statistics
- Sourced from Life/Pension colleagues

<u>Economic Capital Modeling – Theory v. Practice</u> Interest Rate Risk – Summary of Results

Generic Insurance Co. Ltd - Fixed Income Portfolio Sensitivities

Rate Change	Market Value	Market Value Change	Market Value % Change	Effective Duration	Effective Convexity
300	202,843	(32,157)	-13.7%	4.56	0.20
250	207,934	(27,066)	-11.5%	4.61	0.18
200	213,226	(21,774)	-9.3%	4.63	0.14
150	218,695	(16,305)	-6.9%	4.63	0.05
100	224,189	(10,811)	-4.6%	4.60	-0.04
50	229,657	(5,343)	-2.3%	4.55	-0.10
0	235,000	-	0.0%	4.75	-0.14
-50	240,141	5,141	2.2%	4.38	-0.11
-100	245,131	10,131	4.3%	4.31	-0.06
-150	249,969	14,969	6.4%	4.25	0.02
-200	254,833	19,833	8.4%	4.22	0.10
-250	259,848	24,848	10.6%	4.23	0.13
-300	265,040	30,040	12.8%	4.26	0.14

<u>Economic Capital Modeling – Theory v. Practice</u> Investment Risk - Bonds

Equates to Interest Rate Risk Increased Credibility due to Severity certainty

<u>Economic Capital Modeling – Theory v. Practice</u> Investment Risk – Stocks/Equities

Practical actuarial approach uses McNichols/Rizzo method with CV = VIX 1990-June 2010

2007-June 2010

<u>Economic Capital Modeling – Theory v. Practice</u> Stochastic Modeling of Market Prices

<u>Economic Capital Modeling – Theory v. Practice</u>

Generic Insurance Co. Ltd, 1 year Stock Return Projection

<u>Economic Capital Modeling – Theory v. Practice</u> Credit Risk - Bonds

- Liquidity("L") & Contagion("C") Exposure
- Rating agency transitions matrices
- Other time accelerative approaches
- Recognize L&C induce leptokurtosis
- Copula inference below 95th (Newtonian Physics)
- 95th to 99th, L or C (Special Relativity Physics)
- Beyond 99th, L <u>and</u> C (Quantum Physics)
- Conclusion: Mimic ESG or BCAR to keep pace

<u>Economic Capital Modeling – Theory v. Practice</u> Credit Risk – Reinsurance Recoverable

- Not a material concern in general (due to the lower financial leverage of Insurers v. Banks).
- Property Cat and Commercial Excess effects.
- Copula considerations (where in the CDF does the credibility need to be the highest).
- Conclusion: Mimic BCAR to keep pace.

<u>Economic Capital Modeling – Theory v. Practice</u> Dependence & Correlation Structures

<u>Economic Capital Modeling – Theory v. Practice</u> A Corollary to the Dilbert Principle

• <u>Economic Capital Modeling – Theory v. Practice</u> Correlation Does Not Imply Causation

<u>Economic Capital Modeling – Theory v. Practice</u> Underwriting Dependence

Correlation between Lines

Change entries in matrix by changing blue selections.

US	Line 2								
Line1		Demonal Auto	Commercial	Commercial	We deem	Other Link III.	Medical Melocation	Other I tability	Draduate
	Homoownore	Lishility	Nulti Doril	Auto	Comp		CM		Froducts
Homeowners	Homeowners	Liketomity		Auto	Comp	out	G im	C IM	Liability Occ
Porsonal Auto Liability	6%								
Commorcial Multi Doril	20%	2404							
Commercial Auto	20%	24%	E10 /						
	5%	21%	51%						
Workers Comp	-9%	31%	45%	64%					
Other Liability Occ	-2%	31%	49%	69%	65%				
Medical Malpractice CM	-11%	21%	57%	71%	76%	80%			
Other Liability CM	-4%	34%	43%	45%	60%	59%	74%		
Products Liability Occ	11%	24%	41%	74%	65%	66%	80%	31%	

<u>Economic Capital Modeling – Theory v. Practice</u> Correlation Structure – "amongst and in between"

Selected

CovMatrix for Iman - Conover Copula - Adequacy

		Int Rate							
	Total UW	Resv Risk	Reins Rec	Credit Risk	Risk	Stock Risk	Inv Income		
Total UW	1.00	0.40	0.25	0.15	0.15	0.10	0.15		
Resv Risk	0.40	1.00	0.40	0.40	0.25	0.25	0.25		
Reins Rec	0.25	0.40	1.00	0.25	0.25	0.25	0.25		
Credit Risk	0.15	0.40	0.25	1.00	0.50	0.25	0.5		
Int Rate Risk	0.15	0.25	0.25	0.50	1.00	0.30	0.75		
Stock Risk	0.10	0.25	0.25	0.25	0.30	1.00	0.3		
Inv Income	0.15	0.25	0.25	0.50	0.75	0.30	1		

High

CovMatrix for Iman - Conover Copula - Adequacy

					Int Rate		
	Total UW	Resv Risk	Reins Rec	Credit Risk	Risk	Stock Risk	Inv Income
Total UW	1.00	0.50	0.50	0.40	0.40	0.35	0.4
Resv Risk	0.50	1.00	0.65	0.65	0.50	0.50	0.5
Reins Rec	0.50	0.65	1.00	0.50	0.50	0.50	0.5
Credit Risk	0.40	0.65	0.50	1.00	0.75	0.50	0.75
Int Rate Risk	0.40	0.50	0.50	0.75	1.00	0.55	0.75
Stock Risk	0.35	0.50	0.50	0.50	0.55	1.00	0.55
Inv Income	0.4	0.5	0.5	0.75	0.75	0.55	1

Correlation Assumptions are extremely difficult to parameterize

•

•

•

- Correlation not constant... Risks tend to become more correlated in extreme events
- Requires ability to test sensitivity to alternative correlation assumptions

<u>Economic Capital Modeling – Theory v. Practice</u> **Dependence & Correlation Structures**

Modular Method Boundaries

Show Dependent Results (r = 1)

Then Show Independent Results (r = 0)

<u>Economic Capital Modeling – Theory v. Practice</u> **Dependence & Correlation Structures Modular Method Risk Adjustment Simplified**

Fully Dependent (Minimal ROC)Fully Independent (Excess ROC)

Then take the <u>Geometric Mean</u> Cap @D^0.5 x Cap @I^0.5 = Risk Adjusted <u>Economic Capital Modeling – Theory v. Practice</u> Fundamental Guidelines

True Capital Requirement? Optimum Leverage?

TVar v Var

1 year forward only (Sugihara & May paper)

Manage for risk and not for risk charges

KEEP YOUR BALANCE SHEET CURRENT!

Show deterministic at 98th and 99th to help visualize

<u>Economic Capital Modeling – Theory v. Practice</u> Fundamental Guidelines

Make the pupil understand the difference between:

Process Risk (the estimator of the range) versus Parameter Risk (the range of the estimator)

<u>Economic Capital Modeling – Theory v. Practice</u> Fundamental Guidelines

If you have determined an inflection point. "Speak up" and get it to be <u>known;</u> Reserve Risks exceeds Premium Risks More Stock Mutual Funds then Stocks More Derivatives Volume than Issuance

XL Capital: Claims Made v Occurrence Profile

Note to Self: Average Home Prices can decrease!

<u>Economic Capital Modeling – Theory v. Practice</u> Suggested Reading Non-CAS

Recipe for Disaster: The Formula That Killed Wall Street, Felix Salmon, Wired Magazine, February 23, 2009.

Warning: Physics Envy May Be Hazardous To Your Wealth!, Lo & Mueller, MIT physics journal, March 19, 2010.

Chaos: Making a New Science, James Gleick, Viking Press, 1987.

The (Mis)Behavior of Markets: A Fractal View of Risk, Ruin, and Reward, Mandelbrot & Hudson, Basic Books, 2004.

Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series, Sugihara & May, Nature Magazine, Vol. 344, April 1990.

<u>Economic Capital Modeling – Theory v. Practice</u> Suggested Reading CAS

Actuarial Geometry, Stephen Mildenhall, CAS, March, 2006.

An Examination of Credibility Concepts, Stephen Philbrick, CAS, February, 1980.

Stochastic GBM Methods for Modeling Market Prices, McNichols & Rizzo, CAS, August, 2012.