1

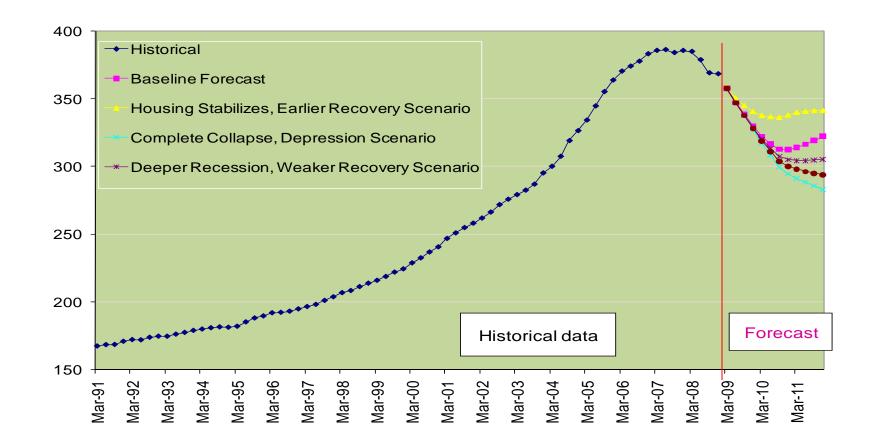
INTELLIGENT RISK MODELING FOR P/C INSURERS

DR. SHAUN WANG, FCAS

09/30/2009

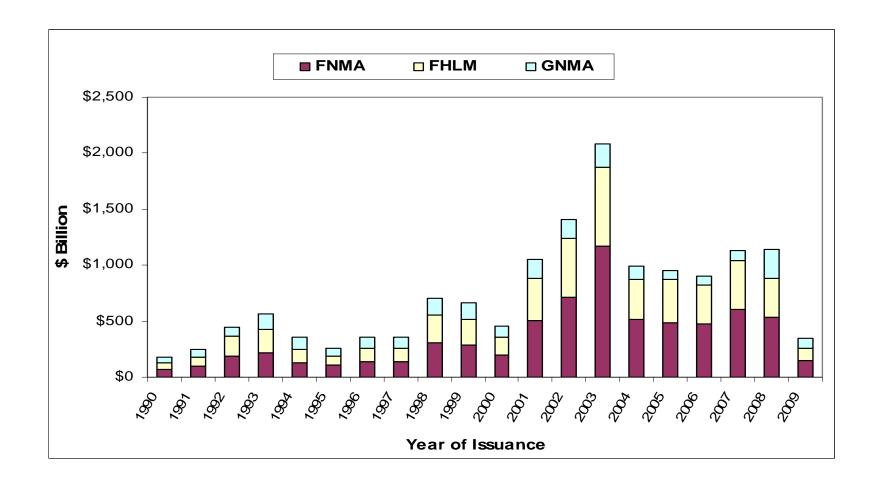
Casualty Actuaries of the South East Meeting, On Georgia State Campus, 9-30-2009

- Financial Crisis and Lessons for Insurers
- □ Re-develop our risk models
- Examples of Model Calibration
- Interactive Discussions on Risk Modeling

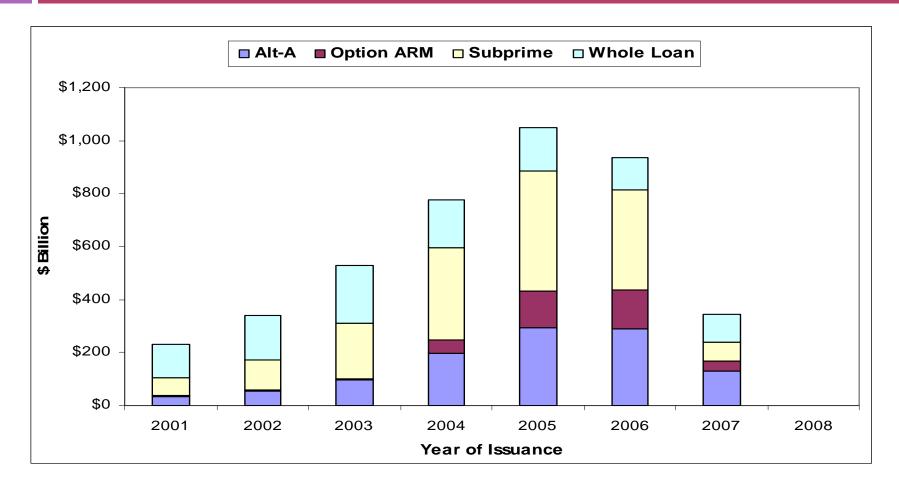

3 **Financial Crisis and Lessons for Insurers** shaun.wang@risklighthouse.com 09/30/2009

Big-pictures estimates (01-2008)

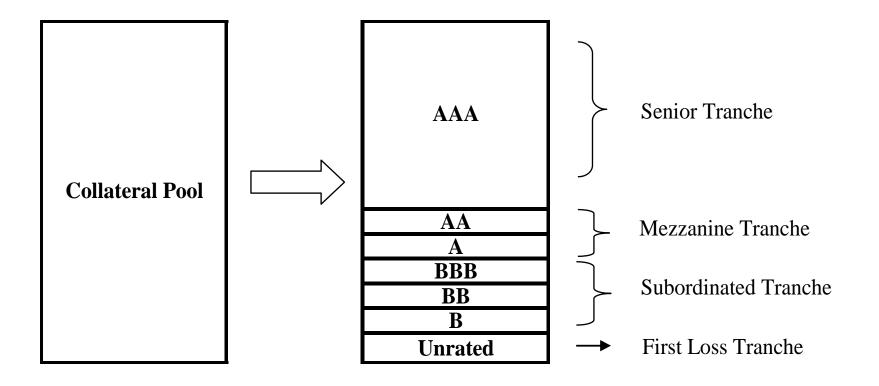
- Total value of the world's real estate
 - > \$75 trillion
- Total value of world's stock and bond markets
 - > more than \$100 trillion
 - Insurance companies hold over \$4 trillion investments (nearly \$3 trillion in rated bonds)
- > Quiz: What is P&C Industry total capital?


Historical and Predicted OFHEO House Price Index (Source: Moody's Economy.com)

5

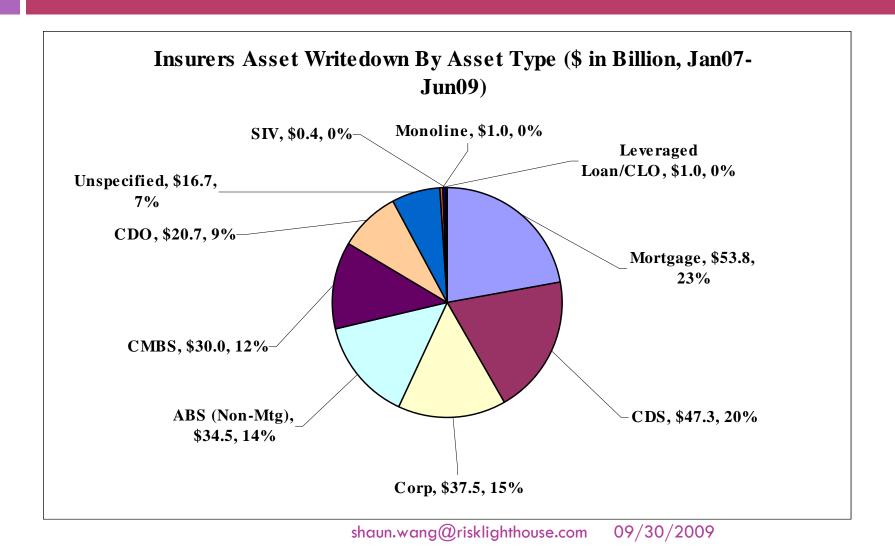

Trend of Agency Issuance and Breakdown by GSE

6



Trend of Non-Agency Issuance and Breakdown by Type

7



CDO (collateralized debt obligation)

Breakdown of Worldwide Insurer Asset Write-Downs Since 2007 through June 2009

9

Asset Allocation and Performance --U.S. Life Insurers and Non-Life Insurers

Table III.7 Life and P&C Insurers 2007 Allocation and 2008 Total Return											
	2007 Allocation		2008 Total Return	1							
	Life	P&C	Index	Index used							
Inv. Grade Corp Bond	41.0%	13.9%	-11.9%	Barclays US Investment Grade Corporate Index							
High Yield Corp Bond	4.6%	1.7%	-45.3%	Barclays US High Yield Corporate Index							
ABS	4.3%	1.7%	-10.2%	US Aggregate ABS Index							
CMBS	6.7%	2.3%	-38.1%	CMBS Index							
Mortgage Loans	12.6%	0.3%	-36.9%	CMBS: Whole Loan Index							
Equities	1.3%	17.8%	-48.6%	S&P500 Index							
Source: Barclays Capital: "Impact of the financial crisis on the insurance industry"											

Recent crisis was due to collective intelligence failure

- "Intelligence is quickness in seeing things as they are" -- George Santayana (1863-1952).
- What led to collective intelligence failure?
 - Too much noise or misinformation in the system
 - Narrow focus due to professional experience (division of labor)
 - Illusion about one's own capability
 - Lack of will-power and mechanism to respond

Complex math models failed

Risk Intelligence succeeded

Why?

- Not enough attention to the whole system
- □ Focused on short-term
- Relies on superficial
 data equations, not
 paying regard to
 structural issues

Why?

- Paid attention to the big picture
- Looked at long-term trends
- Focusing on structural
 issues, incentives and
 business models

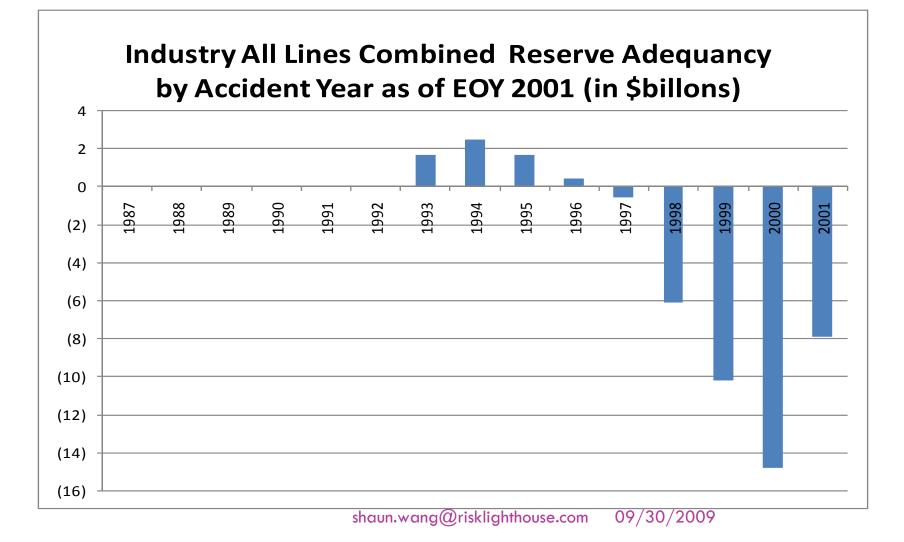
13

Re-develop our Risk Models

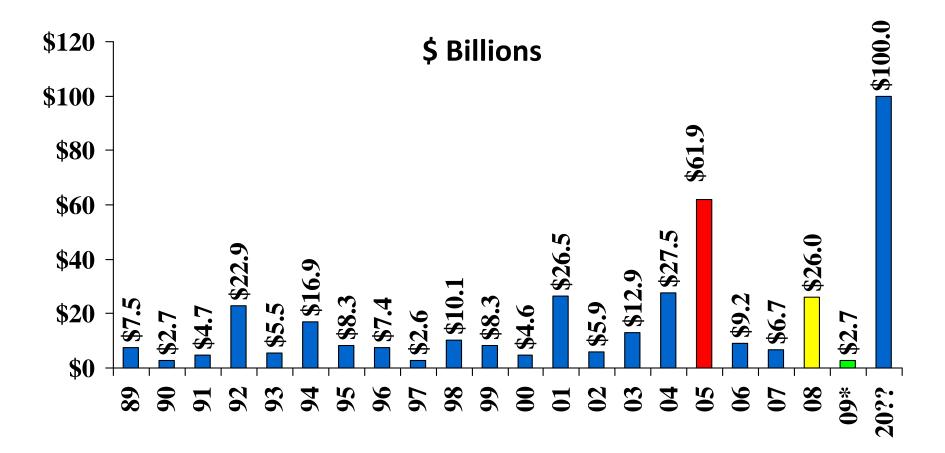
Objectives/Goals of Risk Modeling

- Allow for analysis of broad range of P&C RISK related issues including:
 - Pricing risk
 - Reserving risk
 - Asset side risk
 - Catastrophe risk
 - Impact of changes in reinsurance structures (for reinsurance users)
 - Liquidity/cash flow

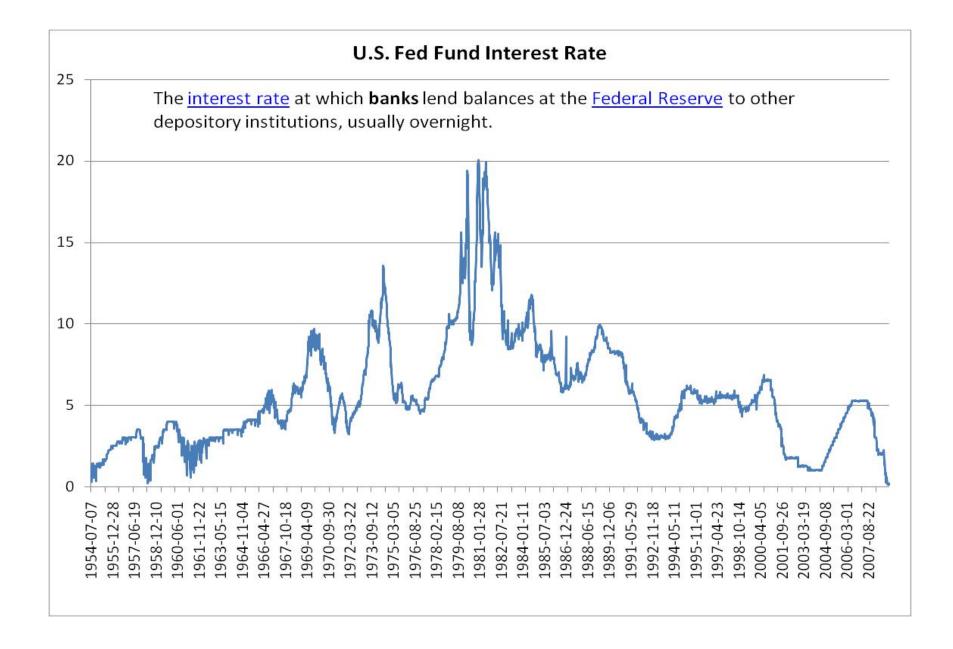
Objectives/Goals (cont'd)


- 2. Allow for more fundamental modeling of interrelationships of risks/dependence without resorting to correlations
- 3. Allow for multi-year time horizon
- 4. Allow framework to be open enough to include systemic risk drivers including:
 - P&C U/W cycle and its drivers
 - Industry catastrophes, pricing cycle (competition), industry capital/reserve position, industry asset performance, underwriting standards

Objectives/Goals (cont'd)


- 4. Allow some ability to test/quantify hypothetical scenarios/stress tests
 - Historical scenarios
 - Interest or Inflation rates changing significantly
 - Other changes in included economic factors:
 - Equity returns
 - Default/recovery rates
 - Credit spreads

Reserve Adequacy/Deficiency



U.S. Insured Catastrophe Losses

*Based on PCS data through March 31 = \$2.7 billion. Source: Property Claims Service/ISO; Insurance Information Institute

Historical Relationship between Interest Rates and Stock Market

Dynamic Yield Curve

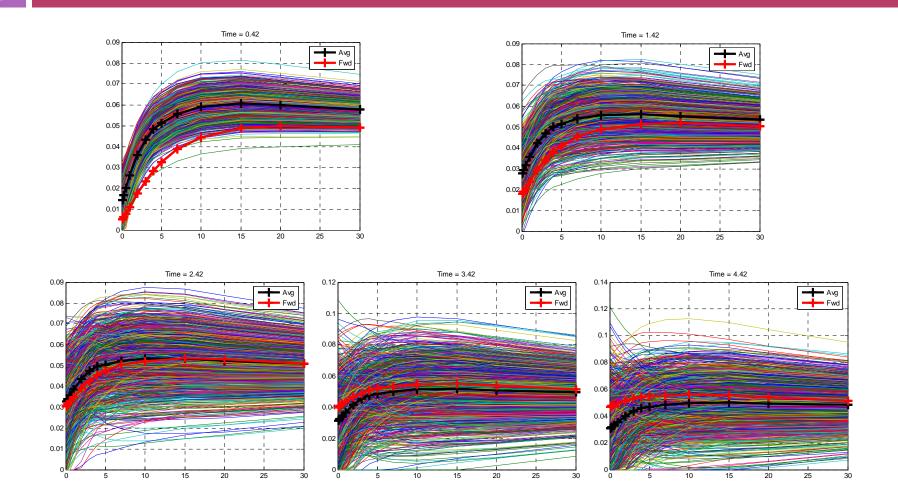
http://stockcharts.com/charts/YieldCurve.html

²¹ Examples of model calibration

An Interest Rates Model

- - (Nominal) Interest rates are at the heart of the economic scenarios
 - Other variables are driven by underlying interest rates
 - □ Model:
 - 2-factor model of short rate (2nd factor is a stochastic mean reverting level for short rate)

 $dr(t) = [\theta(t) + u(t) - \bar{a}'r(t)]dt + \sigma_1 dZ_1(t), \quad r(0) = \eta_0,$ $du(t) = -\bar{b}'u(t)dt + \sigma_2 dZ_2(t), \quad u(0) = 0,$

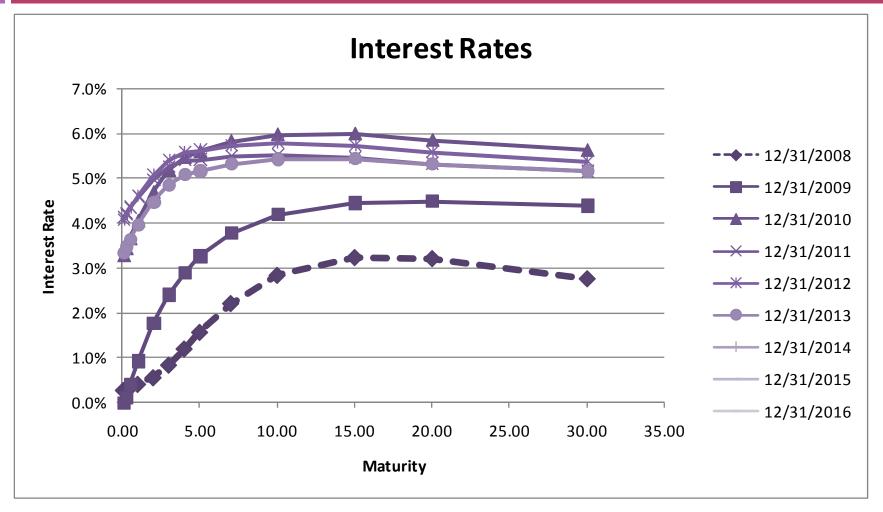

Desirable features of this model

- 23
- Intuitive parameters (can modify to account for expectations (e.g., Fed rate increases))
- Economic basis/underlying rationale
- Consistent real-world and risk-neutral possible
- Tractable, closed form formula for basics (e.g., zero coupon bond valuation)
- Scalable, can be built upon (e.g., inflation, more than one interest rate curve/multi-national support)
- As simple as possible and no simpler (2 factors: parallel shift, slope changes)

Interest Rates – Simulation Procedure

- Use real-world parameters to generate simulated daily rates for 5 years starting with the current yield curve
- Use risk-neutral parameters to imply zero coupon bond prices and in turn the yield curve
- \square Do this N times where N =1,000 or 10,000
- Then grab the year-end values for each of the next
 5 years for the N simulations

A set of simulated interest rates



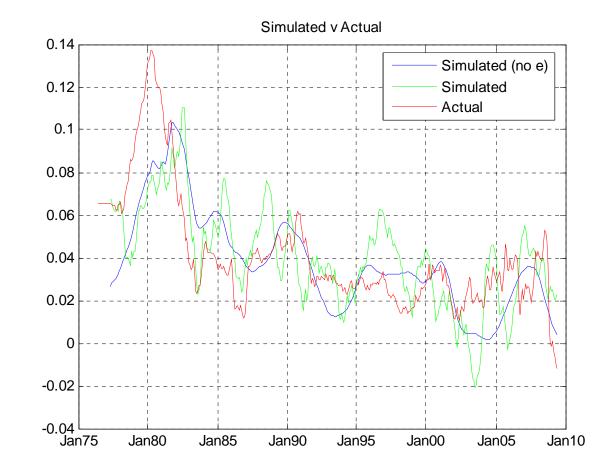
shaun.wang@risklighthouse.com 09

09/30/2009

Illustration: one simulated scenario

shaun.wang@risklighthouse.com 09/30/2009

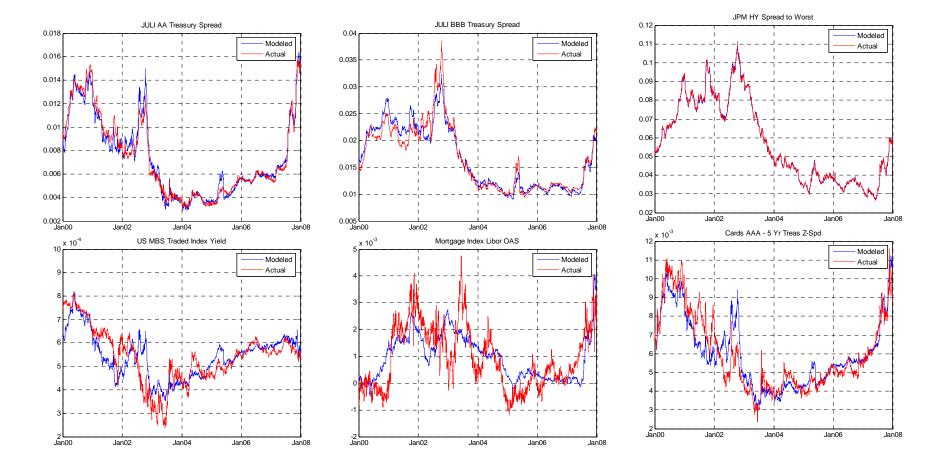
Re-price bonds using scenarios


Valuation Date: 12/31/2008

				Maturity Information						
Portfolio Name	Disc. Spread Key	Floating Ref Rate Spread Key	Bond Type	Bucketed Maturity	Low	High	Avg (WAM)	Notional	Cost	BV
US Government Bond			Fixed	Y	20	30	30	10,000,000	10,000,000	10,000,000
US Government Bond			Fixed	Y	10	20	15	5,000,000	5,000,000	5,000,000
US Government Bond			Fixed	Y	5	10	8	5,000,000	5,000,000	5,000,000
US Government Bond			Fixed	Y	1	5	3	5,000,000	5,100,000	5,000,000
US Government Bond			Fixed	Y	0	1	1	1,000,000	1,000,000	1,000,000
Municipal	Muni		Fixed	Y	20	30	30	10,000,000	10,000,000	10,000,000
Municipal	Muni		Fixed	Y	10	20	15	10,000,000	9,900,000	10,000,000
Municipal	Muni		Fixed	Y	5	10	8	7,500,000	7,500,000	7,500,000
Municipal	Muni		Fixed	Y	1	5	3	5,000,000	5,100,000	5,000,000
Municipal	Muni		Fixed	Y	0	1	1	1,000,000	1,000,000	1,000,000
Unaffiliated	Corp-BBB		Fixed	Y	20	30	30	10,000,000	10,100,000	10,000,000
Unaffiliated	Corp-BBB		Fixed	Y	10	20	15	10,000,000	10,000,000	10,000,000
Unaffiliated	Corp-BBB		Fixed	Y	5	10	8	7,500,000	7,400,000	7,500,000
Unaffiliated	Corp-BBB		Fixed	Y	1	5	3	5,000,000	5,000,000	5,000,000
Unaffiliated	Corp-BBB		Fixed	Y	0	1	1	1,000,000	1,100,000	1,000,000
Collateral Loans	Corp-BBB	LIBOR-1Y	Float	N	0	3	3	100,000	100,000	100,000
Mortgage Loans	RMBS		MBS	N	0	30	30	100,000	100,000	100,000

Inflation Rates - Model

- □ Inflation is driven by interest rates
 - Nominal interest rates implicitly have an inflation expectation
 - Goal: make inflation rates consistent with nominal interest rate scenario
 - Method I chose:
 - Regress inflation rates on interest rate factors and model residual risk
 - Residuals look like an AR model after simple regression so I've chosen an ARX model (Autoregressive with Exogenous factors)


Inflation Rates - Simulation

Credit Spreads - Modeling

- To reduce dimensionality issues we use PCA (Principal Component Analysis) to boil the many spreads down to a more manageable set of factors
 - Similar to interest rate movements being composed of 3 main factors (i.e., level, slope, curvature)
 - For the set of spreads graphed above we end up with the following from PCA

Credit Spreads – Using 3 factors

Inflation Rates – Modeling choices

- What inflation rates do we model (e.g., CPI-All, CPI-Core, CPI-Medical)?
- Which are most relevant for liabilities and assets?
 Obviously this depends on the assets and liabilities
- Are they the same? If not, do we need to model multiple inflation rates? If so, what is the best model for multiple rates?

Apply Scenarios to Exposure Data

- Use industry and company Sch. P data to estimate payout patterns
- Use Sch. D data to get investment holdings
- Apply integrated scenarios to asset and liability exposure data
 - Intelligence embedded in such scenarios

Hurdles to risk modeling?

35

Complex math (lack of intuitive understanding)?
 What level/type of data?

Questions for Interactive Discussions

- 36
- How to link between (i) high-level risk models and (ii) pricing & reserving models?
- 2. How can actuaries get more involved in high-level asset risk modeling?
- 3. How to test and validate risk models, for what purposes?