Energy limits and their impact on ratemaking

Gail Tverberg, FCAS, MAAA March 22, 2011

Outline

- 1. Energy issues are already affecting insurers
- 2. Our energy / exponential growth problem
- 3. Implications for ratemaking
- 4. Mitigations have had little impact (optional)

1. Energy issues are affecting insurers already

- } Deepwater-Horizon Blowout, 2010
- % "Fracking" causing earthquakes
- } Recession of 2008-2009
 - } Auto claims down during recession
 - Workers compensation impacts
 - } Homeowners—falling home values, unoccupied homes
 - } Reduced investment income
- } New types of coverages
 - Solar panels
 - } Electric cars
 - Homeowners raising chickens

2. Our Energy/Exponential growth problem

Exponential growth is fundamental to our current economic system

- } Current monetary system is debt-based
 - Money is loaned into existence
 - Pay back borrowed money with interest
 - **To finance this, exponential growth is needed**

World financial system depends on growth

Repaying loans is easy in a growing economy

Repaying loans is much more difficult in a shrinking – or flat - economy

Exponential Growth

- } Also where population is trending
- Fossil fuels enabled greater food production
- Fossil fuels also enabled better medicine

Source: Based on data from US Census Bureau website.

Population growth corresponds very closely to growth in fuel use

Note: Population from US Census Bureau website; fuel use from Energy Transitions: History, Requirements, Prospects, Appendix A by Vaclav Smil; Praeger, 2010.

Food prices correlate closely with oil prices

FAO Food index from <u>http://www.fao.org/worldfoodsituation/wfs-home/foodpricesindex/en/</u> Brent spot oil price from US Energy Information Administration.

We are reaching limits in many areas

- Fresh water is limited
- For the second secon
- } Ores are at lower concentrations
- Soil is suffering depletion, erosion
- } Climate is stressed by higher CO2
- } Oceans are polluted, acidifying, losing fish
- } Capital for solutions is limited

One of these limits is world oil production

Oil production stopped growing in late 2004OPEC didn't come to the rescue

Source: Graph based on US Energy Information Administration data

Leveling of oil production not entirely unexpected

Oil production in many countries has reached a peak and started declining

Source: Based on data of US Energy Information Administration.

Oil production in other areas also tends to rise and decline

Note: Based on data of US Energy Information Administration.

How could this happen?

A huge amount of oil is available

But in practice there are huge obstacles

- } Cheap oil is mostly gone
- } Expensive oil seems to cause recession
- Major investment needs to be made, well in advance of when oil is needed
- } Prices haven't been high enough, long enough, to support huge investment needed
- } Low-hanging fruit picked to solve 1970s crisis

Respected authorities are talking about a possible future problem

But are missing the issue that we already have a current problem.

'Peak Oil' and the German Government

Military Study Warns of a Potentially Drastic Oil Crisis

This post is a contribution to Honda's "Racing Against Time" thought leadership series. The Oil Drum was selected to provide a unique perspective on how we should approach the discussion of oil as a finite energy source. During the first week of

WHITE PAPER SUSTAINABLE ENERGY SECURITY

Strategic risks and opportunities for business

guardian.co.uk

US military warns oil output may dip causing massive shortages by 2015

- · Shortfall could reach 10m barrels a day, report says
- · Cost of crude oil is predicted to top \$100 a barrel

To make matters worse, China, India, and OPEC are taking more of the oil

Source: Based on International Energy Statistics shown on EIA website

Oil has many uses

Food Uses

- } Fertilizer
- } Pesticides
- } Herbicides
- } Diesel for tractors
- Fast transport to market
- } Diesel for irrigation
- Fuel for refrigeration
- } Asphalt for roads

Other Uses

- } Medicines
- } Plastics
- } Gasoline
- } Synthetic cloth
- } Building materials
- } Easier metal extraction
 and working
- } Diesel for earth movers

World GDP Growth & World Oil Production Growth Have Tracked For Decades.

Source: Robert Hirsch

Research suggests that oil prices over \$80 - \$85 barrel cause US recessions

Figure 1. Petroleum expenditures as a percent of GDP in the U.S. and real oil price.

Source: David Murphy http://netenergy.theoildrum.com/node/5304

Some oil problems are hidden

- } Everyone expects very high prices and inadequate supply
- Real problem: Economy cannot afford even moderately high oil prices
 - } Result looks like <u>excessive</u> oil supply
 - People cannot afford the oil that is available
 - Oil prices don't keep going higher
 - } Related to energy needed to produce the oil
 - } Can't spend more than one barrel of oil to get a barrel of oil
- } If oil prices kept going higher, substitutes and more oil would be found
- <u>Recession</u>, <u>debt defaults</u> can also be symptoms of oil problems.

Liebig's Law of the Minimum

- Agricultural yield is proportional to the amount of the most limiting nutrient
- Chemical reactions output limited by the reagent with smallest quantity

- } Does limited oil supply constrict economic output?
 - } High price restricts consumer's ability to purchase oil

Recession seems likely in the near term

Longer term, growth may turn to contraction

Scenario 1: What most assume will happen

Scenario 2: Alternative that should also be considered

3. Implications for ratemaking

- } Expect more recession, or recession-growth-recession
- } Expect governments to be in worse financial shape
 - > Not repair roads as well
 - May default on their bonds
 - May not fix damage after catastrophes
- } Expect some periods of high oil prices
 - Affect general inflation rate, goods made with oil
- Expect more defaults on bonds held on insurer balance sheets
 - } Difficulty with bonds likely to make long tail lines hard to write

Implications for ratemaking (Cont.)

- } Many new coverages
- } Homes with Solar PV
 - } Don't want to overlook in rating
 - May present theft risk if on the ground
- } Homes with Wind Turbines
 - } Tend to cause vibration if on top of buildings
 - > Need way to rate, if separate structures
- } Electric cars
 - } Probably very low mileage, second or third car
 - > Not attractive to thieves
- } Shared cars, boats, homes

Implications for homeowners ratemaking

- } House prices will stay low
 - } Defaulting loans, poor maintenance
 - More fraud
 - } More claims due to causes like leaky roofs
- } Shift in mix toward older homes
 - Raise average loss amount
- } Poorer homeowners may "shop" rates more
 - } Raise loss ratio
- } Crime rate may increase, due to more unemployed
 people
 - But more people will be at home occupying homes during day

Implications for Private Passenger Auto Ratemaking

Implications for private passenger auto ratemaking (other)

- } Deteriorating roads
- } Insureds may be more fraud prone
- } May be more theft claims
- } Auto repair costs likely to rise with the price of oil
- } Vehicle maintenance suffer
 - } Lead to more crashes (tire blowouts, etc.)
- } Governments may issue more tickets, helping auto rates.

Catastrophe pricing

- Governments likely to be slower to fix roads, provide basic services
 - Business interruption may last much longer
- } Near term (<10 year) climate change models probably OK
 - } These are what is important for pricing
 - } Longer term models assume too much oil, coal, NG
 - What would models say with realistic assumptions?

Ratemaking for long-tail lines

- } Rising oil prices push up long term inflation rates
- } Defaulting bonds cause investment returns to fall
- } Long term outlook dim
- } May see return to quick payout lines

General Impacts

- } Some insurance companies may fail
 - Post-insolvency assessment funds likely not to work
- } Pension plans and 401(k) plans for employees do poorly
- Basic issue: Exponential growth cannot continue in a finite world
 - } Oil is a piece of this
 - **}** But so is population, water supplies, financial system
 - } A solution would be great, but it is not clear that one exists.

4. Mitigation has had little impact

Mitigation Issues

- } Oil is our single largest energy source
- } There are no good substitutes for oil
 - } Wind, solar, natural gas, coal won't run today's cars
 - } Ethanol is only 2% of current energy supply
- } Even within electricity, renewables are a small share

Renewables tend to be expensive

IEA, Forecasted cost of electricity generation in OECD countries in 2015. All figures in US dollar cent per kWh	Median Costs at 5% interest rate	Cost Range at 5% interest rate	Median Costs at 10% interest rate	Cost Range at 10% interest rate
Nuclear Electricity	5.9	2.9 - 8.2	9.9	4.2 - 13.7
Coal Electricity	4.4	3.6 - 8.0	5.8	4.9 - 10.4
Natural Gas Electricity	7.6	5.9 - 9.2	8.1	6.7 - 10.7
Onshore Wind Electricity	9.7	4.8 - 16.3	13.7	7.0 -23.4
Offshore Wind Electricity	14.5	10.1 - 18.8	19.0	14.6 - 26.1
Photovoltaic Solar Electricity	21.5	n/a	33.3	n/a
Thermal Solar Electricity	13.6	n/a	24.3	n/a

Source: http://www.theoildrum.com/node/7275

To read more

- } OurFiniteWorld.com my own site
- } TheOilDrum.com a group site I write at as "Gail the Actuary"