
CUCCARPENTER UNDEL → MERCHARPENTER UNDEL Hands on: How to Use Generalized Linear Models to Model Loss Triangles Blake Berman Blake.Berman@guycarp.com

HOW TO: Generalized Linear Model

- 1. What is a GLM for Reserving
- 2. How to use a GLM in Reserving
- 3. Why use a GLM in Reserving

What is a GLM? $\frac{\text{Linear Model}}{\mathcal{E}[y] = mx + b}$

What is a GLM? Linear Model E[y] = mx + bDefinition: the generalized linear model (GLM) is a flexible generalization of ordinary linear regression that allows for response variables that have other than a normal distribution. The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a **link function** and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.

What is a GLM?

$$\frac{\text{Linear Link Function:}}{E[Y] = f(X_1) + g(X_2) + h(X_3) + \beta}$$

What is a GLM?

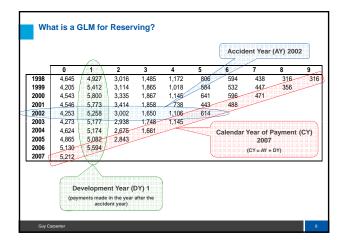
$$Linear Link Function:$$

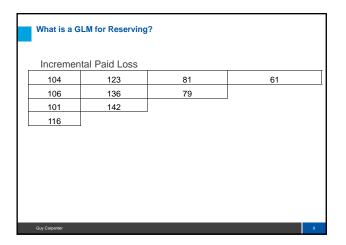
$$E[Y] = f(X_1) + g(X_2) + h(X_3) + \beta$$

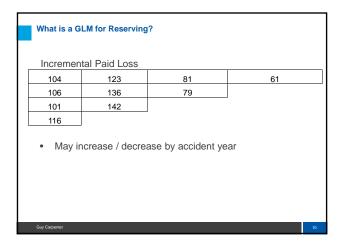
$$Log Link Function:$$

$$E[Y] = e^{f(X_1) + g(X_2) + h(X_3) + \beta}$$

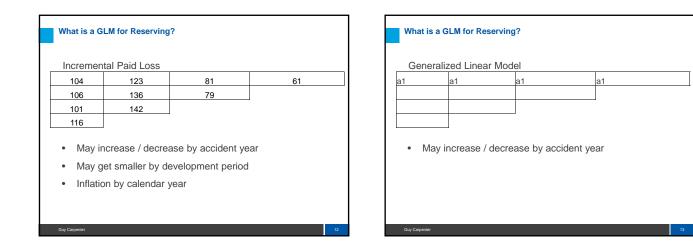
What is a GLM?
Linear Link Function:

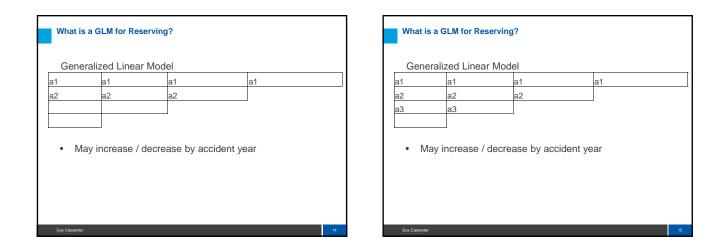

$$f[Y] = f(X_1) + g(X_2) + h(X_3) + \beta$$
Log Link Function:

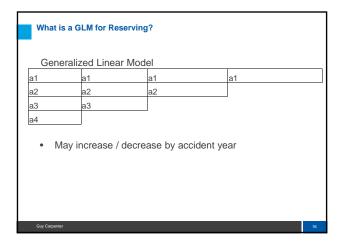

$$f[Y] = e^{f(X_1) + g(X_2) + h(X_3) + \beta}$$
Traditionally used in pricing:


$$X_1 = Credit Score$$

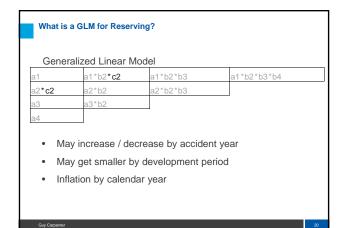
$$X_2 = Zip Code$$

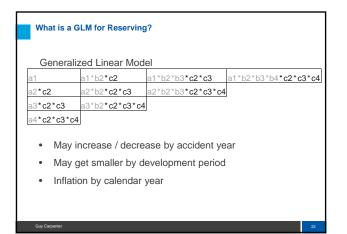

$$X_3 = Make \& Model of vehicle$$



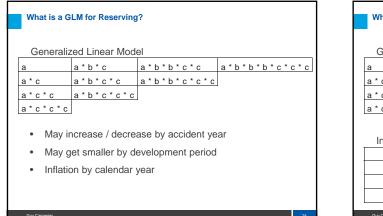


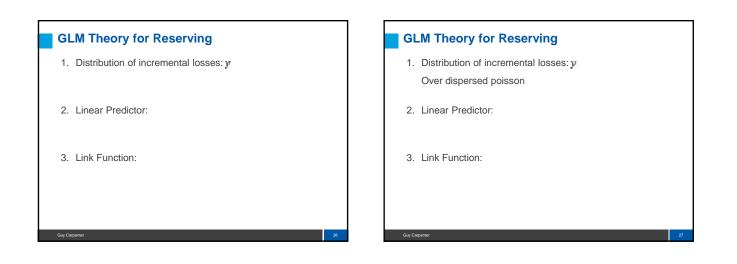
	LM for Reserving	?		
	tal Paid Loss			
104	123	81	61	
106	136	79		
101	142			
116				
		ase by accident yea	ar	
Guy Carpenter				11

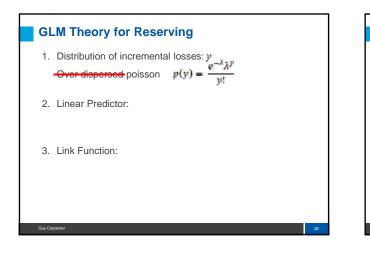


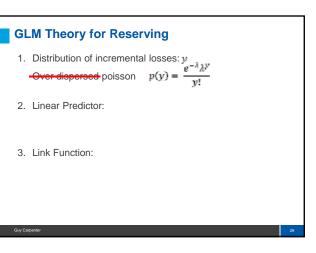


Generalized Linear Model a1 a1*b2 a1 a2 a2*b2 a2 a3 a3*b2 a4 a4			erving?	s a GLM for Rese	What i
a2 a2*b2 a2 a3 a3*b2 a4 • May increase / decrease by accident year			Model	eralized Linear	Gene
A A A A A A A A A A A A A A A A A	a1		a1	a1* b2	1
May increase / decrease by accident year			a2	a2* b2	2
				a3* b2	3
					4
May get smaller by development period	ar	accider	ecrease by	1ay increase / d	• N
		nent pe	by develop	lay get smaller	• N

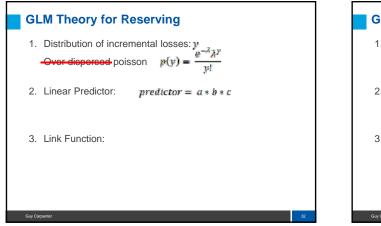

Generalized Linear Model	Genera	alized Linear I	Vodel	
a1*b2 a1*b2*b3 a1 a2*b2 a2*b2*b3 a3*b2	a1 a2 a3	a1*b2 a2*b2 a3*b2	a1* b2*b3 a2* b2*b3	a1*b2*b3*b4
 May increase / decrease by accident year May get smaller by development period 			ecrease by accider by development pe	

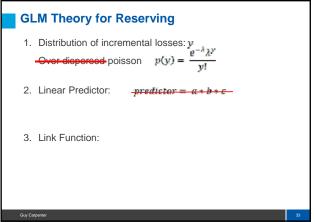

Genera	lized Linear Mo	del	
a1	a1*b2 *c2	a1*b2*b3 *c2*c3	a1*b2*b3*b4
a2*c2	a2*b2 *c2*c3	a2*b2*b3	
a3*c2*c3	a3*b2		
a4			
		ease by accident y development perio	

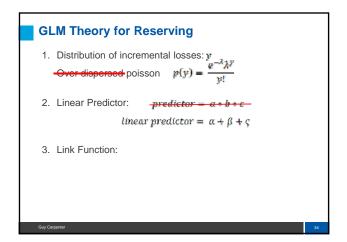


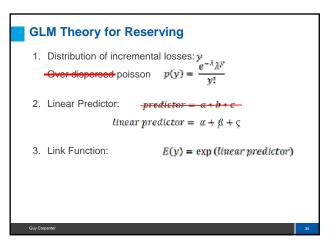

What is a G	LM for Reserving	15								
Generaliz	zed Linear Mod	el								
a1	a1*b2*c2	a1*b2*b3*c2*c3	a1*b2*b3*b4*c2*c3*c4							
a2*c2	a2*b2*c2*c3	a2*b2*b3*c2*c3*c4								
a3*c2*c3	a3*b2*c2*c3*c4									
a4*c2*c3*c4										
,	 May increase / decrease by accident year May get smaller by development period 									
Inflation by calendar year										
Guy Carpenter			23							

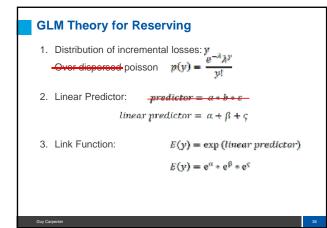
Wha	atisaG	LM for Reserving	?		
Ge	eneraliz	ed Linear Mod	el		
а		a*b*c	a*b*b*c*c	a * b * b * b * c * c *	с
a*c		a*b*c*c	a*b*b*c*c*c		
a*c	* с	a*b*c*c*c			
a*c	* c * c				
Inc	remen	tal Paid Loss			
1	04	123	81	61	
1	06	136	79		
1	01	142			
1	16				
Guy Car	penter				25

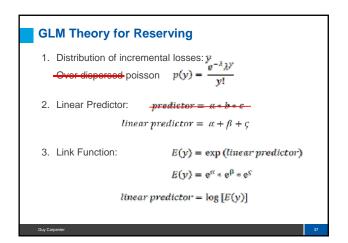


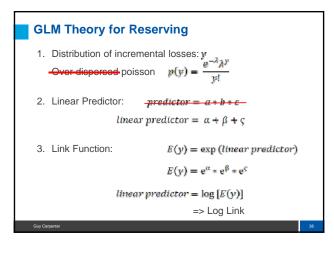


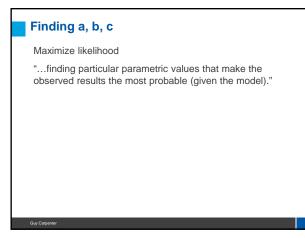



GLM Th	eory for Re	serv	/ing)									
Predictor													
а	a*b*c	a*b	* b '	* c *	с	а	* b	* b	* b	* 0	*	с*	с
a*c	a*b*c*c	a*b	* b '	* c *	с*с								
a*c*c	a * b * c * c * c												
a*c*c*c													
Guy Carpenter													30


GLM Theory for Reserving																
Predictor	:															
а	a*b*c	a *	b *	b	۰ c	* (2	а	* b	*	b'	' b	* (c *	с	*
a * c	a*b*c*c	a *	b *	b	° c	* (c * c									
a*c*c	a*b*c*c*c															
a * c * c * c																
	•															
Guy Carpenter																3



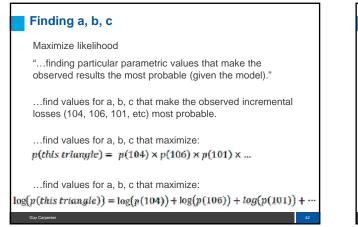




Maximize likelihood

"...finding particular parametric values that make the observed results the most probable (given the model)."

...find values for a, b, c that make the observed incremental losses (104, 106, 101, etc) most probable.



Maximize likelihood

"...finding particular parametric values that make the observed results the most probable (given the model)."

...find values for a, b, c that make the observed incremental losses (104, 106, 101, etc) most probable.

...find values for a, b, c that maximize: $p(this triangle) = p(104) \times p(106) \times p(101) \times ...$

Finding a, b, c

...find values for a, b, c that maximize: $log(p(this triangle)) = log(p(104)) + log(p(106)) + log(p(101)) + \cdots$

What is log(p(y))?

Finding a, b, c

...find values for a, b, c that maximize: $log(p(this triangle)) = log(p(104)) + log(p(106)) + log(p(101)) + \cdots$

What is log(p(y))?

Each incremental loss, $\ensuremath{\mathcal{Y}}$ is an outcome from an Over-dispersed Poisson Distribution.

Finding a, b, c

...find values for a, b, c that maximize: $log(p(this triangle)) = log(p(104)) + log(p(106)) + log(p(101)) + \cdots$

What is log(p(y))?

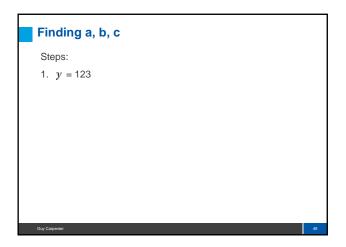
Each incremental loss, *y*, is an outcome from an Overdispersed Poisson Distribution.

$$p(y) = \frac{e^{-E(y)}E(y)^y}{y!}$$

Finding a, b, c

...find values for a, b, c that maximize: $log(p(this triangle)) = log(p(104)) + log(p(106)) + log(p(101)) + \cdots$

What is log(p(y))?


Guy Carp

Each incremental loss, $\ensuremath{\mathcal{Y}}$, is an outcome from an Over-dispersed Poisson Distribution.

$$p(y) = \frac{e^{-E(y)}E(y)^y}{y!}$$

$$log(p(y)) = -E(y) + ylog(E(y)) - log(y!)$$

Finding	a, b, c		
$E(\mathbf{y})$			
а	a*b*c	a*b*b*c*c	a*b*b*b*c*c*c
a * c	a*b*c*c	a*b*b*c*c*c	
a*c*c	a*b*c*c*c		
a*c*c*c			
y			
104	123	81	61
106	136	79	
101	142		
116			
Guy Carpenter			48

Steps:

- 1. y = 123
- 2. Fill in dummy values for a, b and c

Finding a, b, c

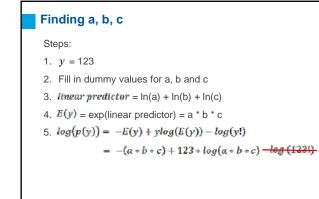
Steps:

- 1. y = 123
- 2. Fill in dummy values for a, b and c
- 3. *linear predictor* = ln(a) + ln(b) + ln(c)

Finding a, b, c

Steps:

- 1. y = 123
- 2. Fill in dummy values for a, b and c
- 3. *linear predictor* = ln(a) + ln(b) + ln(c)
- 4. $E(y) = \exp(\text{linear predictor}) = a * b * c$


Finding a, b, c

Steps:

- 1. y = 123
- 2. Fill in dummy values for a, b and c
- 3. *linear predictor* = ln(a) + ln(b) + ln(c)
- 4. $E(y) = \exp(\text{linear predictor}) = a * b * c$
- 5. log(p(y)) = -E(y) + ylog(E(y)) log(y!)

Steps:

- 1. y = 123
- 2. Fill in dummy values for a, b and c
- 3. *linear predictor* = ln(a) + ln(b) + ln(c)
- 4. $E(y) = \exp(\text{linear predictor}) = a * b * c$
- 5. log(p(y)) = -E(y) + ylog(E(y)) log(y!)
 - = -(a * b * c) + 123 * log(a * b * c) log (123!)

Finding a, b, c

Steps:

1. y = 123

- 2. Fill in dummy values for a, b and c
- 3. *linear predictor* = ln(a) + ln(b) + ln(c)
- 4. $E(y) = \exp(\text{linear predictor}) = a * b * c$
- 5. log(p(y)) = -E(y) + ylog(E(y)) log(y!)

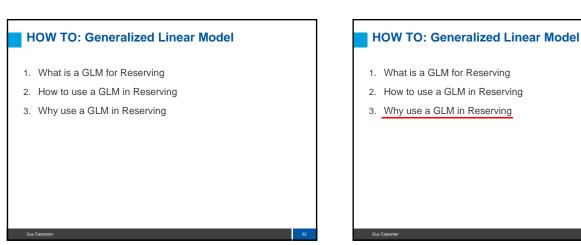
= -(a * b * c) + 123 * log(a * b * c) - log(123))

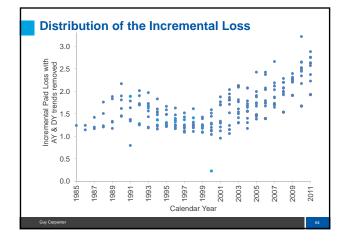
6. Do for all incremental losses

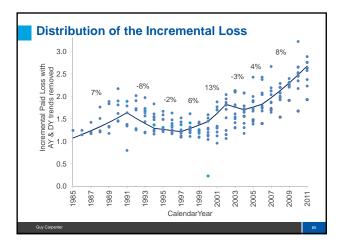
Finding a, b, c

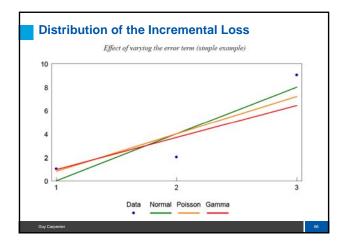
Steps:

- 1. y = 123
- 2. Fill in dummy values for a, b and c $% \left({{{\mathbf{r}}_{i}}} \right)$
- 3. *linear predictor* = ln(a) + ln(b) + ln(c)
- 4. $E(y) = \exp(\text{linear predictor}) = a * b * c$
- 5. log(p(y)) = -E(y) + ylog(E(y)) log(y!)
 - = -(a * b * c) + 123 * log(a * b * c) log(1231)
- 6. Do for all incremental losses
- 7. Sum and solve for a, b, c that maximizes the sum


HOW TO: Generalized Linear Model


- 1. What is a GLM for Reserving
- 2. How to use a GLM in Reserving
- 3. Why use a GLM in Reserving


HOW TO: Generalized Linear Model


- 1. What is a GLM for Reserving
- 2. How to use a GLM in Reserving
- 3. Why use a GLM in Reserving


Reservi	ng with a G	LM	
E(y)			
а	a*b*c	a * b * b * c ^ 2	a*b*b*b*c^3
a * c	a*b*c^2	a*b*b*c^3	a * b * b * b * c ^ 4
a*c^2	a*b*c^3	a * b * b * c ^ 4	a * b * b * b * c ^ 5
a*c^3	a * b * c ^ 4	a * b * b * c ^ 5	a * b * b * b * c ^ 6
Guy Carpenter			61

