Emb

Vehicle Symbol Development

Serhat Guven Senior Consultant

September 2009

© 2008 EMB. All rights reserved.

PURPOSE: To discuss techniques for creating proprietary symbols within the context of multivariate review, including proper tools and diagnostics

OUTLINE

- Background
- Vehicle Estimator
 - Initial Estimator
 - > Diagnostics
 - > Vehicle Spatial Correction
- Vehicle Symbols
- Vehicle Relativities
- > Summary

Basics of Predictive Modeling:

Vehicle Symbol/Relativity Analysis:

- > Vehicle is a major risk driver and accounts for much rate variation
- > Two elements:
 - > Symbols
 - > Relativities
- > Historically, focus on relativities and not symbols
 - Symbols on limited data, anecdotal evidence, competitors, bureaus, and judgment
 - > Liability symbols relatively recent phenomenon
 - > Regular reviews of relativities with "tweaking" symbols

Significant Variation in Pricing by Vehicle:

Issues with Symbol Analysis:

- High-dimensionality
 - Vehicle symbol requires a large number of small units as building blocks
 - Companies have limited data, so many building blocks have little or no claims experience
- High correlation
 - Symbols tends to be highly correlated with other rating variables (e.g., age, credit, tier, etc)
 - Multivariate framework required to handle highly correlated variables

Vehicle Symbol/Relativity Analysis

Vehicle symbol analysis is a multi-stage process.

Initial Estimator:

Component models built using vehicle characteristics

Modeled Vehicle Signal

Diagnostics:

- Need to identify additional signal in residual that can be attributed to the vehicle dimension
- Basic residual definition

$$Residual_{VIN} = \frac{\sum_{i \in VIN} Actual_{i}}{\sum_{i \in VIN} Expected_{i}}$$

- Issues with raw residual
 - > VINs are very small building blocks with limited data
 - > Unordered categorical data creates interpretation problems
- > Use 'spatial smoothing' concepts to investigate signals

Vehicle Estimator

Diagnostics:

- > High number of dimensions (e.g. make/model)
- May by only a few observations for any one dimension

Similar issue for boundary analysis solved via smoothing of results

- Distance-based smoothing
- Adjacency-based smoothing

Smoothing techniques can be applied to vehicle residuals to identify signal

"Neighbor" Vehicles

Instead of using latitude/longitude to build adjacency relationships, use vehicle dimensions

Once the "neighbors" are determined, the same techniques used for territorial analysis can be applied

© 2008 EMB. All rights reserved. Slide 11

Vehicle Estimator

Diagnostics:

Smoothing and diagnostics used to identify signal in the vehicle residual

- Consistency tests further support signal identification
- Both time and data consistency tests should be performed

- QQ plot on smoothed residual indicates potential signal
- If no signal, then all estimated cdfs would be above uniform cdf

Vehicle Spatial Correction:

Residual signal used to adjust scores from multivariate model

Clustering Basics

- Clustering used to produce groupings that are predictive of the future:
 - > Minimize within-group heterogeneity.
 - > Maximize cross-group heterogeneity.
- Commonly-used clustering methods:
 - > Quantiles
 - > Equal Weight
 - Similarity Methods
 - Average Linkage
 - Centroid

Clustering Methodologies:

- Quantiles
 - > Create groups with an equal number of observations
- Equal Weight
 - > Create groups which have an equal amount of weight
- > Similarity Methods:
 - > Rank the data set by the statistic you wish to cluster
 - > Decide on which pair of records are the 'most similar'
 - > Group these records
 - > Repeat until left with the desired number of groups

Similarity Methods

- Average Linkage
 - Difference between clusters is the average difference between pairs of observations, one in each cluster
 - > Tends to join clusters with small variances
- Centroid
 - Difference between clusters is the difference between the mean values of the clusters squared
 - > VINs allocated to more extreme groups

Average Ennag

Vehicle Symbols

Clustering:

> Vehicle estimator is clustered into new symbols

Modeled Vehicle Signal **Spatial Correction** Base Curb Engine Model Airbag Theft Smoothed Low Weight Price Deterrents Size Year Features Residual \$ 3 4 5 6 8 9 10 11 12 13 14 Vehicle 15 Component 16 High **Relativities** \$

Symbol Relativities

- Model fit using new symbol definitions instead of vehicle proxies
- Test relativities using standard tests
 - > Lift statistics used to judge explanatory power
 - > Consistency tests used to judge predictive power
- Refine symbols/relativities as appropriate
 - Incorporate rule-based restrictions
 - > Apply actuarial knowledge
 - > Investigate "neighbors" with very different relativities

Symbol Relativities

Summary

Vehicle Symboling Overview

> Accurate estimation of underlying risk associated with the vehicle

Cluster vehicle building blocks to develop symbols separately by coverage(s) and component

Summary

Proven Results

>US insurer

- Canadian insurer
- German insurance dataset

Technique has proven very successful based on proper hold-out sampling validation

Summary

- Vehicle groupings are a major driver of risk, thus it is critical that companies review <u>symbols</u> and relativities regularly.
- Issues exist that create special challenges with regards to symbol analysis.
 - > High-dimensionality
 - > Heavily correlated
- Vehicle symbols require a range of different approaches and tools (as there are different loss drivers)
- > Diagnostics needed to ensure best model possible