

EagleEye Analytics

Territorial Ratemaking Eliade Micu, PhD, FCAS emicu@eeanalytics.com SCCAC Spring Meeting, June 2nd 2011

Description of the Problem

- Territorial ratemaking (and highly dimensional predictors in general) has been an area of active actuarial research lately
- ✓ Compare and contrast possible approaches:
 - GLM
 - GLM + spatial smoothing + clustering
 - Machine learning (rule induction)
- ✓ Newer approaches try to incorporate some domain knowledge in solving the problem, such as distance, spatial adjacency or other similarity measures
- ✓ Challenges:
 - Choice of building block (zip code, census tract)
 - Data credibility and volume
 - Ease of explanation

Evaluating Model Performance

- ✓ Fundamental predictive modeling questions:
 - How well would the model perform when applied to new risks (generalization power)?
 - How well does the model fit training data (goodness of fit)?
 - Selected model is always a "compromise" between these two criteria
- ✓ Analysis setup:
 - Split the data into training and validation datasets (60 40 split)
 - Derive new model using only the training data
 - Validate by applying the model to the validation data
- ✓ Model performance metrics:
 - *Correlation*: measure of predictive stability (generalization power), computed as the correlation coefficient of pure premium by territory between training and validation datasets
 - Goodness-of-fit statistics (deviances):
 - Derive relativities on training data, then apply them to validation data to compute new model fitted premiums
 - Compare new model fitted premiums to the observed incurred losses

Spatial Smoothing

 Compute better estimators for zip code loss propensity by incorporating the experience of other zips

✓ Requirements:

- *Credibility*: zips with higher volume should receive less smoothing than zips with sparse experience
- *Distance*: incorporate the experience of other zips based on some measure of "closeness" to a given zip
- *Smoothing amount*: determined based on data, possibly adjusted due to pragmatic considerations
- ✓ Data needed:
 - "Zip code variables": demographic, crime, weather, etc
 - Location: latitude, longitude of zip centroid
 - List of neighbors for each zip

Spatial Smoothing – General Approach

✓ Fit GLM to multistate data:

Observed Pure Premium ~ class plan variables + zip code variables

✓ Compute *Residual Pure Premium*:

ResPP = Observed PP / GLM Fitted PP

Adjust model weights:

AdjEEXP = EEXP * GLM fitted PP

- Residual PP enters the smoothing algorithm, Adjusted EEXP are the model weights
- ✓ Choose:
 - distance measure between zips d_{ik}:
 - Distance between centroids
 - Adjacency distance: number of zips that need to be traversed to get from Zip_i to Zip_k
 - Neighborhood N_i

Inverse Distance Weighted Smoothing

- ✓ Aggregate AdjEEXP and ResPP at the zip code level
- ✓ Compute Smoothed Residual PP for each Zip_i :

$$SmResPP_{i} = Z_{i} \cdot ResPP_{i} + (1 - Z_{i}) \cdot \frac{\sum_{k \in N_{i}} AdjEEXP_{k} \cdot f(d_{ik}) \cdot ResPP_{k}}{\sum_{k \in N_{i}} AdjEEXP_{k} \cdot f(d_{ik})}$$

✓ Where:

$$Z_{i} = \frac{AdjEEXP_{i}}{AdkEEXP_{i} + K}$$

$$f(x) = \frac{1}{x^{p}}$$
✓ Compute Fitted Geographical PP for each zip:
Fitted Geo PP_{i} = SmResPP_{i} \cdot Zip Code Variables GLM relativities

Estimating K and p

- ✓ K and p need to be estimated from the *training* data by cross-validation
- ✓ Split the training data 70 30 at random
- ✓ Apply the smoothing algorithm on 70% of the data and compute Residual fitted pure premiums for each zip
- ✓ Compute a deviance measure on the remaining 30% and choose K and p that minimize deviance:

Clustering

- ✓ Type of *unsupervised* learning: no training examples
- Cluster: collection of objects similar to each other within cluster and dissimilar to objects in other clusters
- ✓ Form of data compression: all objects in a cluster are represented by the cluster (mean)
- ✓ Objects: individual zip codes, described by Fitted Geo PP_i
- ✓ Types of clustering algorithms:
 - *Hierarchical*: agglomerative or divisive HCLUST
 - Partitioning: create an initial partition (possibly at random), then use iterative relocation to improve partitioning by switching objects between clusters – k-Means
 - *Density-based*: grow a cluster as long as the number of data points in the "neighborhood" exceeds some density threshold DBSCAN
 - *Grid-based*: quantize space into a grid, then use some transform (FFT or similar) to identify structure WaveCluster

How Many Clusters?

- ✓ Most algorithms have the number of desired clusters p as an input
- ✓ Between sum of squares (SS_b), within sum of squares(SS_w):
 - SS_b increases as the number of clusters increase, highest when each object is assigned to its own cluster, opposite for SS_w
 - Plot SS_b, SS_w vs. the number of clusters p and judgmentally select p such that the improvement appears "insignificant"
- ✓ Use F-test:
 - $F_w = SS_w(p) / SS_w(q)$ has a $F_{n-p,n-q}$ distribution
 - $F_b = SS_b(p) / SS_b(q)$ has a $F_{p-1,q-1}$ distribution
 - Select p based on a given significance level
- Clustering is unsupervised learning, so need better metrics to assess quality of results

Cluster Validity Index

- ✓ p clusters $C_1,..., C_p$, with means $m_1,..., m_p$
- $\checkmark~$ Each object r described by a given metric x_r
- ✓ Define *Dunn Index*:

$$\mathbf{r}(\mathbf{C}_{j}) = \frac{1}{\left|\mathbf{C}_{j}\right|} \sum_{\mathbf{r} \in \mathbf{C}_{j}} \left|\mathbf{x}_{\mathbf{r}} - \mathbf{m}_{j}\right| \text{ (cluster radius)}$$

$$d(\mathbf{C}_{i},\mathbf{C}_{j}) = \frac{1}{|\mathbf{C}_{i}| \cdot |\mathbf{C}_{j}|} \sum_{\mathbf{r} \in \mathbf{C}_{i}, \mathbf{s} \in \mathbf{C}_{j}} |\mathbf{x}_{\mathbf{r}} - \mathbf{x}_{\mathbf{s}}| \text{ (inter - cluster distance)}$$

$$D = \frac{\min_{1 \le i < j \le p} d(C_i, C_j)}{\max_{1 \le j \le p} r(C_j)} (Dunn Index)$$

- \checkmark Higher values for D indicate better clustering, so choose p that maximizes D
- ✓ Used k-Means with p=22 based on SS_b , SS_w and D

Alternative Approach

- ✓ *Machine Learning* methods:
 - Non-parametric: no explicit assumptions about the functional form of the distribution of the data
 - Computer does the "heavy lifting", no human intervention required in the search process
- ✓ *Rule Induction*:
 - Partitions the whole universe into "segments" described by combinations of significant attributes: *compound variables*
 - Risks in each segment are homogeneous with respect to chosen model response
 - Risks in different segments show a significant difference in expected value for the response
- The only predictors used are zip code variables, the segments will become the new territories
- ✓ Response: ResPP = Observed PP / Class Plan Variables GLM relativities
- ✓ Model weights: AdjEEXP = EEXP * Class Plan Variables GLM relativities

Segment Description – Illustrative Output

Segment	Description
1	Population=[-1 or 0 to 13119] TransportationCommuteToWorkGreaterThan60min=[-1 or 9 or more] CostofLivingFood=[95 to 122]
2	EconomyHouseholdIncome=[-1 or 53663 or more] TransportationCommuteToWorkGreaterThan60min=[-1 or 9 or more] PopulationByOccupationConstructionExtractionAndMaintenance=[-1 or 0 to 7] EducationStudentsPerCounselor=[27 to 535] HousingUnitsByYearStructureBuilt1999To2008=[-1 or 0 to 5]
20	TransportationCommuteToWorkGreaterThan60min=[-1 or 9 or more] Population=[-1 or 0 to 28784] HousingUnitsByYearStructureBuilt1990To1994=[0 to 2] CostofLivingFood=[-1 or 123 or more]
21	TransportationCommuteToWorkGreaterThan60min=[-1 or 9 or more] PopulationByOccupationSalesAndOffice=[0 to 28] EconomyHouseholdIncome=[-1 or 53663 or more] HousingUnitsByYearStructureBuilt1999To2008=[6 or more]
22	EconomyHouseholdIncome=[-1 or 53663 or more] TransportationCommuteToWorkGreaterThan60min=[-1 or 9 or more] PopulationByOccupationConstructionExtractionAndMaintenance=[8 or more] EducationStudentsPerCounselor=[27 to 535] HousingUnitsBvYearStructureBuilt1999To2008=[-1 or 0 to 5]

Model Validation

- ✓ Each approach produced 22 territories using training data only
- \checkmark Apply each set of territory definitions to the "unseen" validation data

Statistic	Spatial Smoothing	Rule Induction
Lift Training	2.64	2.95
Lift Validation	2.56	2.87
Correlation	98.09%	98.76%

Goodness of Fit Measures on Validation Data

Simple Dev =
$$\sum_{i=1}^{n} EEXP_i \cdot |\text{Hist PP}_i - \text{Fitted PP}_i|$$
Sum of Squares Dev = $\sum_{i=1}^{n} EEXP_i \cdot (\text{Hist PP}_i - \text{Fitted PP}_i)^2$ Chi Sq Dev = $\sum_{i=1}^{n} EEXP_i \frac{(\text{Hist PP}_i - \text{Fitted PP}_i)^2}{\text{Fitted PP}_i}$ Simple DevSS DevChi Sq DevSpatial Smoothing0.30840.29840.21990.3155Improvement3.26%1.63%1.43%

Agreement on Predicted Values

		Rule Induction Territory																					
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
noothing Territory	1	4.3%	0.1%	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	2	1.4%	2.4%	0.3%	0.2%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	3	0.3%	1.6%	1.3%	0.6%	0.7%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	4	0.0%	0.2%	1.2%	1.2%	1.7%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	5	0.0%	0.7%	1.3%	1.0%	1.4%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	6	0.0%	0.1%	0.5%	1.3%	1.2%	1.0%	0.4%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	7	0.0%	0.0%	0.1%	0.3%	0.3%	2.0%	1.6%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	8	0.0%	0.0%	0.0%	0.0%	0.2%	1.6%	1.9%	0.4%	0.4%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	9	0.0%	0.0%	0.0%	0.0%	0.3%	0.3%	0.2%	2.1%	1.4%	0.1%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	10	0.0%	0.0%	0.0%	0.0%	0.1%	0.0%	0.1%	1.6%	1.2%	0.8%	0.4%	0.0%	0.0%	0.1%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	11	0.0%	0.0%	0.0%	0.0%	0.1%	0.0%	0.0%	0.7%	0.5%	0.8%	1.9%	0.2%	0.0%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	12	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.2%	0.0%	0.0%	1.9%	1.7%	0.3%	0.1%	0.2%	0.2%	0.0%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%
al Sr	13	0.0%	0.0%	0.0%	0.0%	0.4%	0.0%	0.0%	0.1%	0.6%	0.6%	0.7%	1.5%	0.2%	0.0%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Spati	14	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	0.5%	0.5%	0.6%	0.9%	1.1%	0.5%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	15	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.5%	1.2%	0.7%	0.5%	0.2%	0.5%	0.3%	0.0%	0.0%	0.0%	0.0%
	16	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.3%	0.0%	0.0%	0.1%	0.4%	0.6%	0.5%	0.9%	0.0%	0.9%	0.9%	0.0%	0.0%	0.1%	0.0%
	17	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.0%	1.4%	0.4%	0.6%	0.8%	0.0%	0.1%	0.3%	0.0%
	18	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	0.8%	1.7%	0.1%	0.7%	0.0%	0.3%	0.8%	0.0%
	19	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	0.0%	0.0%	0.4%	0.9%	0.5%	1.7%	0.3%	0.3%	0.0%
	20	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.1%	0.1%	0.0%	0.0%	0.3%	1.8%	0.6%	1.9%	0.0%
	21	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.6%	2.8%	1.0%	0.0%
	22	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.1%	1.0%	2.6%

Spatial Smoothing + Rule Induction

- ✓ Try to combine both methods, any potential gain?
- Remove the signal accounted for by rule induction, apply spatial smoothing on the residuals
- ✓ Determine K and p using the same approach: the implied value for K is very large, which suggest that there is no signal left in the residuals

Conclusions

- ✓ Both models validated well when applied to unseen data
- ✓ Rule Induction:
 - Provides more lift and better fit
 - Plain English description for the territories
 - Less information required
 - May be applied to other states with sparser data
 - Easy to extend to other highly dimensional problems (symbols)
- ✓ Spatial Smoothing:
 - Makes intuitive sense for PPA (driving patterns)
 - Requires user selection for distance measure, neighborhood, clustering algorithm and number of clusters
 - Less transparent, harder to explain
 - Challenging to extend to other problems: distance, neighborhood

