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Description of the Problem
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 Territorial ratemaking (and highly dimensional predictors in general) has 
been an area of active actuarial research lately

 Compare and contrast possible approaches:
• GLM
• GLM + spatial smoothing + clustering
• Machine learning (rule induction)

 Newer approaches try to incorporate some domain knowledge in solving the 
problem, such as distance, spatial adjacency or other similarity measures

 Challenges:
• Choice of building block (zip code, census tract)
• Data credibility and volume
• Ease of explanation



Evaluating Model Performance
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 Fundamental predictive modeling questions: 
• How well would the model perform when applied to new risks (generalization 

power)?
• How well does the model fit training data (goodness of fit)?
• Selected model is always a “compromise” between these two criteria

 Analysis setup:
• Split the data into training and validation datasets (60 – 40 split)
• Derive new model using only the training data
• Validate by applying the model to the validation data

 Model performance metrics:
• Correlation: measure of predictive stability (generalization power), computed as 

the correlation coefficient of pure premium by territory between training and 
validation datasets

• Goodness-of-fit statistics (deviances):
 Derive relativities on training data, then apply them to validation data to compute 

new model fitted premiums
 Compare new model fitted premiums to the observed incurred losses



Spatial Smoothing
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 Compute better estimators for zip code loss propensity by incorporating the 
experience of other zips

 Requirements:
• Credibility: zips with higher volume should receive less smoothing than 

zips with sparse experience
• Distance: incorporate the experience of other zips based on some 

measure of “closeness” to a given zip
• Smoothing amount: determined based on data, possibly adjusted due 

to pragmatic considerations

 Data needed:
• “Zip code variables”: demographic, crime, weather, etc
• Location: latitude, longitude of zip centroid
• List of neighbors for each zip



Spatial Smoothing – General Approach
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 Fit GLM to multistate data:
Observed Pure Premium ~ class plan variables + zip code variables

 Compute Residual Pure Premium:
ResPP = Observed PP / GLM Fitted PP

 Adjust model weights:
AdjEEXP = EEXP * GLM fitted PP

 Residual PP enters the smoothing algorithm, Adjusted EEXP are the model 
weights 

 Choose:
• distance measure between zips dik:
 Distance between centroids
 Adjacency distance: number of zips that need to be traversed to get 

from Zipi to Zipk

• Neighborhood Ni



Inverse Distance Weighted Smoothing

6

 Aggregate AdjEEXP and ResPP at the zip code level

 Compute Smoothed Residual PP for each Zipi:

 Where:

 Compute Fitted Geographical PP for each zip:
Fitted Geo PPi = SmResPPi · Zip Code Variables GLM relativities
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Estimating K and p
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 K and p need to be estimated from the training data by cross-validation
 Split the training data 70 – 30 at random
 Apply the smoothing algorithm on 70% of the data and compute Residual 

fitted pure premiums for each zip
 Compute a deviance measure on the remaining 30% and choose K and p 

that minimize deviance:

0.3685

0.3690

0.3695

0.3700

0.3705

0.3710

0.3715
10

00
00

12
50

00
15

00
00

17
50

00
20

00
00

22
50

00
25

00
00

27
50

00
30

00
00

32
50

00
35

00
00

37
50

00
40

00
00

42
50

00
45

00
00

47
50

00
50

00
00

Si
m

pl
e 

D
ev

ia
nc

e

K

p = 2
p = 2.1
p = 2.2
p = 2.3
p = 2.4
p = 2.5
p = 2.6



Clustering
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 Type of unsupervised learning: no training examples
 Cluster: collection of objects similar to each other within cluster and 

dissimilar to objects in other clusters
 Form of data compression: all objects in a cluster are represented by the 

cluster (mean)
 Objects: individual zip codes, described by Fitted Geo PPi

 Types of clustering algorithms:
• Hierarchical: agglomerative or divisive - HCLUST
• Partitioning: create an initial partition (possibly at random), then use 

iterative relocation to improve partitioning by switching objects between 
clusters – k-Means

• Density-based: grow a cluster as long as the number of data points in 
the “neighborhood” exceeds some density threshold - DBSCAN

• Grid-based: quantize space into a grid, then use some transform (FFT 
or similar) to identify structure - WaveCluster



How Many Clusters?
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 Most algorithms have the number of desired clusters p as an input

 Between sum of squares (SSb), within sum of squares(SSw):
• SSb increases as the number of clusters increase, highest when each 

object is assigned to its own cluster, opposite for SSw

• Plot SSb, SSw vs. the number of clusters p and judgmentally select p 
such that the improvement appears “insignificant”

 Use F-test:
• Fw = SSw(p) / SSw(q) has a Fn-p,n-q distribution
• Fb = SSb(p) / SSb(q) has a Fp-1,q-1 distribution
• Select p based on a given significance level

 Clustering is unsupervised learning, so need better metrics to assess quality 
of results



Cluster Validity Index

10

 p clusters C1,…, Cp, with means m1,…, mp

 Each object r described by a given metric xr

 Define Dunn Index:

 Higher values for D indicate better clustering, so choose p that maximizes D
 Used k-Means with p=22 based on SSb, SSw and D
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Alternative Approach
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 Machine Learning methods:
• Non-parametric: no explicit assumptions about the functional form of the 

distribution of the data
• Computer does the “heavy lifting”, no human intervention required in the 

search process
 Rule Induction:

• Partitions the whole universe into “segments” described by combinations 
of significant attributes: compound variables

• Risks in each segment are homogeneous with respect to chosen model 
response

• Risks in different segments show a significant difference in expected 
value for the response

 The only predictors used are zip code variables, the segments will become 
the new territories

 Response: ResPP = Observed PP / Class Plan Variables GLM relativities
 Model weights: AdjEEXP = EEXP * Class Plan Variables GLM relativities



Segment Description – Illustrative Output
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Segment Description

1 Population=[-1 or 0 to 13119] TransportationCommuteToWorkGreaterThan60min=[-1 or 9 
or more] CostofLivingFood=[95 to 122] 

2

EconomyHouseholdIncome=[-1 or 53663 or more] 
TransportationCommuteToWorkGreaterThan60min=[-1 or 9 or more] 
PopulationByOccupationConstructionExtractionAndMaintenance=[-1 or 0 to 7] 
EducationStudentsPerCounselor=[27 to 535] 
HousingUnitsByYearStructureBuilt1999To2008=[-1 or 0 to 5] 

… ...

20
TransportationCommuteToWorkGreaterThan60min=[-1 or 9 or more] Population=[-1 or 0 to 
28784] HousingUnitsByYearStructureBuilt1990To1994=[0 to 2] CostofLivingFood=[-1 or 
123 or more] 

21
TransportationCommuteToWorkGreaterThan60min=[-1 or 9 or more] 
PopulationByOccupationSalesAndOffice=[0 to 28] EconomyHouseholdIncome=[-1 or 
53663 or more] HousingUnitsByYearStructureBuilt1999To2008=[6 or more] 

22

EconomyHouseholdIncome=[-1 or 53663 or more] 
TransportationCommuteToWorkGreaterThan60min=[-1 or 9 or more] 
PopulationByOccupationConstructionExtractionAndMaintenance=[8 or more] 
EducationStudentsPerCounselor=[27 to 535] 
HousingUnitsByYearStructureBuilt1999To2008=[-1 or 0 to 5] 



Model Validation
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 Each approach produced 22 territories using training data only
 Apply each set of territory definitions to the “unseen” validation data
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Statistic Spatial Smoothing Rule Induction
Lift Training 2.64 2.95

Lift Validation 2.56 2.87
Correlation 98.09% 98.76%



Goodness of Fit Measures on Validation Data
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Spatial Smoothing 0.3084 0.2235 0.3201

Rule Induction 0.2984 0.2199 0.3155

Improvement 3.26% 1.63% 1.43%



Agreement on Predicted Values
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Rule Induction Territory
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1 4.3% 0.1% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

2 1.4% 2.4% 0.3% 0.2% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 0.3% 1.6% 1.3% 0.6% 0.7% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

4 0.0% 0.2% 1.2% 1.2% 1.7% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

5 0.0% 0.7% 1.3% 1.0% 1.4% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

6 0.0% 0.1% 0.5% 1.3% 1.2% 1.0% 0.4% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

7 0.0% 0.0% 0.1% 0.3% 0.3% 2.0% 1.6% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

8 0.0% 0.0% 0.0% 0.0% 0.2% 1.6% 1.9% 0.4% 0.4% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

9 0.0% 0.0% 0.0% 0.0% 0.3% 0.3% 0.2% 2.1% 1.4% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

10 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 1.6% 1.2% 0.8% 0.4% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

11 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.7% 0.5% 0.8% 1.9% 0.2% 0.0% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

12 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 1.9% 1.7% 0.3% 0.1% 0.2% 0.2% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%

13 0.0% 0.0% 0.0% 0.0% 0.4% 0.0% 0.0% 0.1% 0.6% 0.6% 0.7% 1.5% 0.2% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

14 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.5% 0.5% 0.6% 0.9% 1.1% 0.5% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

15 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.5% 1.2% 0.7% 0.5% 0.2% 0.5% 0.3% 0.0% 0.0% 0.0% 0.0%

16 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 0.1% 0.4% 0.6% 0.5% 0.9% 0.0% 0.9% 0.9% 0.0% 0.0% 0.1% 0.0%

17 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 1.4% 0.4% 0.6% 0.8% 0.0% 0.1% 0.3% 0.0%

18 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.8% 1.7% 0.1% 0.7% 0.0% 0.3% 0.8% 0.0%

19 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.4% 0.9% 0.5% 1.7% 0.3% 0.3% 0.0%

20 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.3% 1.8% 0.6% 1.9% 0.0%

21 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 2.8% 1.0% 0.0%

22 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.1% 1.0% 2.6%



Spatial Smoothing + Rule Induction
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 Try to combine both methods, any potential gain?
 Remove the signal accounted for by rule induction, apply spatial smoothing 

on the residuals
 Determine K and p using the same approach: the implied value for K is very 

large, which suggest that there is no signal left in the residuals
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Conclusions
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 Both models validated well when applied to unseen data

 Rule Induction:
• Provides more lift and better fit
• Plain English description for the territories
• Less information required
• May be applied to other states with sparser data
• Easy to extend to other highly dimensional problems (symbols)

 Spatial Smoothing:
• Makes intuitive sense for PPA (driving patterns)
• Requires user selection for distance measure, neighborhood, clustering 

algorithm and number of clusters
• Less transparent, harder to explain
• Challenging to extend to other problems: distance, neighborhood 
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