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Description of the Problem
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 Territorial ratemaking (and highly dimensional predictors in general) has 
been an area of active actuarial research lately

 Compare and contrast possible approaches:
• GLM
• GLM + spatial smoothing + clustering
• Machine learning (rule induction)

 Newer approaches try to incorporate some domain knowledge in solving the 
problem, such as distance, spatial adjacency or other similarity measures

 Challenges:
• Choice of building block (zip code, census tract)
• Data credibility and volume
• Ease of explanation



Evaluating Model Performance
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 Fundamental predictive modeling questions: 
• How well would the model perform when applied to new risks (generalization 

power)?
• How well does the model fit training data (goodness of fit)?
• Selected model is always a “compromise” between these two criteria

 Analysis setup:
• Split the data into training and validation datasets (60 – 40 split)
• Derive new model using only the training data
• Validate by applying the model to the validation data

 Model performance metrics:
• Correlation: measure of predictive stability (generalization power), computed as 

the correlation coefficient of pure premium by territory between training and 
validation datasets

• Goodness-of-fit statistics (deviances):
 Derive relativities on training data, then apply them to validation data to compute 

new model fitted premiums
 Compare new model fitted premiums to the observed incurred losses



Spatial Smoothing

4

 Compute better estimators for zip code loss propensity by incorporating the 
experience of other zips

 Requirements:
• Credibility: zips with higher volume should receive less smoothing than 

zips with sparse experience
• Distance: incorporate the experience of other zips based on some 

measure of “closeness” to a given zip
• Smoothing amount: determined based on data, possibly adjusted due 

to pragmatic considerations

 Data needed:
• “Zip code variables”: demographic, crime, weather, etc
• Location: latitude, longitude of zip centroid
• List of neighbors for each zip



Spatial Smoothing – General Approach
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 Fit GLM to multistate data:
Observed Pure Premium ~ class plan variables + zip code variables

 Compute Residual Pure Premium:
ResPP = Observed PP / GLM Fitted PP

 Adjust model weights:
AdjEEXP = EEXP * GLM fitted PP

 Residual PP enters the smoothing algorithm, Adjusted EEXP are the model 
weights 

 Choose:
• distance measure between zips dik:
 Distance between centroids
 Adjacency distance: number of zips that need to be traversed to get 

from Zipi to Zipk

• Neighborhood Ni



Inverse Distance Weighted Smoothing
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 Aggregate AdjEEXP and ResPP at the zip code level

 Compute Smoothed Residual PP for each Zipi:

 Where:

 Compute Fitted Geographical PP for each zip:
Fitted Geo PPi = SmResPPi · Zip Code Variables GLM relativities
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Estimating K and p
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 K and p need to be estimated from the training data by cross-validation
 Split the training data 70 – 30 at random
 Apply the smoothing algorithm on 70% of the data and compute Residual 

fitted pure premiums for each zip
 Compute a deviance measure on the remaining 30% and choose K and p 

that minimize deviance:
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Clustering
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 Type of unsupervised learning: no training examples
 Cluster: collection of objects similar to each other within cluster and 

dissimilar to objects in other clusters
 Form of data compression: all objects in a cluster are represented by the 

cluster (mean)
 Objects: individual zip codes, described by Fitted Geo PPi

 Types of clustering algorithms:
• Hierarchical: agglomerative or divisive - HCLUST
• Partitioning: create an initial partition (possibly at random), then use 

iterative relocation to improve partitioning by switching objects between 
clusters – k-Means

• Density-based: grow a cluster as long as the number of data points in 
the “neighborhood” exceeds some density threshold - DBSCAN

• Grid-based: quantize space into a grid, then use some transform (FFT 
or similar) to identify structure - WaveCluster



How Many Clusters?
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 Most algorithms have the number of desired clusters p as an input

 Between sum of squares (SSb), within sum of squares(SSw):
• SSb increases as the number of clusters increase, highest when each 

object is assigned to its own cluster, opposite for SSw

• Plot SSb, SSw vs. the number of clusters p and judgmentally select p 
such that the improvement appears “insignificant”

 Use F-test:
• Fw = SSw(p) / SSw(q) has a Fn-p,n-q distribution
• Fb = SSb(p) / SSb(q) has a Fp-1,q-1 distribution
• Select p based on a given significance level

 Clustering is unsupervised learning, so need better metrics to assess quality 
of results



Cluster Validity Index
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 p clusters C1,…, Cp, with means m1,…, mp

 Each object r described by a given metric xr

 Define Dunn Index:

 Higher values for D indicate better clustering, so choose p that maximizes D
 Used k-Means with p=22 based on SSb, SSw and D
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Alternative Approach
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 Machine Learning methods:
• Non-parametric: no explicit assumptions about the functional form of the 

distribution of the data
• Computer does the “heavy lifting”, no human intervention required in the 

search process
 Rule Induction:

• Partitions the whole universe into “segments” described by combinations 
of significant attributes: compound variables

• Risks in each segment are homogeneous with respect to chosen model 
response

• Risks in different segments show a significant difference in expected 
value for the response

 The only predictors used are zip code variables, the segments will become 
the new territories

 Response: ResPP = Observed PP / Class Plan Variables GLM relativities
 Model weights: AdjEEXP = EEXP * Class Plan Variables GLM relativities



Segment Description – Illustrative Output
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Segment Description

1 Population=[-1 or 0 to 13119] TransportationCommuteToWorkGreaterThan60min=[-1 or 9 
or more] CostofLivingFood=[95 to 122] 

2

EconomyHouseholdIncome=[-1 or 53663 or more] 
TransportationCommuteToWorkGreaterThan60min=[-1 or 9 or more] 
PopulationByOccupationConstructionExtractionAndMaintenance=[-1 or 0 to 7] 
EducationStudentsPerCounselor=[27 to 535] 
HousingUnitsByYearStructureBuilt1999To2008=[-1 or 0 to 5] 

… ...

20
TransportationCommuteToWorkGreaterThan60min=[-1 or 9 or more] Population=[-1 or 0 to 
28784] HousingUnitsByYearStructureBuilt1990To1994=[0 to 2] CostofLivingFood=[-1 or 
123 or more] 

21
TransportationCommuteToWorkGreaterThan60min=[-1 or 9 or more] 
PopulationByOccupationSalesAndOffice=[0 to 28] EconomyHouseholdIncome=[-1 or 
53663 or more] HousingUnitsByYearStructureBuilt1999To2008=[6 or more] 

22

EconomyHouseholdIncome=[-1 or 53663 or more] 
TransportationCommuteToWorkGreaterThan60min=[-1 or 9 or more] 
PopulationByOccupationConstructionExtractionAndMaintenance=[8 or more] 
EducationStudentsPerCounselor=[27 to 535] 
HousingUnitsByYearStructureBuilt1999To2008=[-1 or 0 to 5] 



Model Validation
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 Each approach produced 22 territories using training data only
 Apply each set of territory definitions to the “unseen” validation data
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Statistic Spatial Smoothing Rule Induction
Lift Training 2.64 2.95

Lift Validation 2.56 2.87
Correlation 98.09% 98.76%



Goodness of Fit Measures on Validation Data
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Spatial Smoothing 0.3084 0.2235 0.3201

Rule Induction 0.2984 0.2199 0.3155

Improvement 3.26% 1.63% 1.43%



Agreement on Predicted Values

15

Rule Induction Territory
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1 4.3% 0.1% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

2 1.4% 2.4% 0.3% 0.2% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

3 0.3% 1.6% 1.3% 0.6% 0.7% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

4 0.0% 0.2% 1.2% 1.2% 1.7% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

5 0.0% 0.7% 1.3% 1.0% 1.4% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

6 0.0% 0.1% 0.5% 1.3% 1.2% 1.0% 0.4% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

7 0.0% 0.0% 0.1% 0.3% 0.3% 2.0% 1.6% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

8 0.0% 0.0% 0.0% 0.0% 0.2% 1.6% 1.9% 0.4% 0.4% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

9 0.0% 0.0% 0.0% 0.0% 0.3% 0.3% 0.2% 2.1% 1.4% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

10 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.1% 1.6% 1.2% 0.8% 0.4% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

11 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.7% 0.5% 0.8% 1.9% 0.2% 0.0% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

12 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 1.9% 1.7% 0.3% 0.1% 0.2% 0.2% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%

13 0.0% 0.0% 0.0% 0.0% 0.4% 0.0% 0.0% 0.1% 0.6% 0.6% 0.7% 1.5% 0.2% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

14 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.5% 0.5% 0.6% 0.9% 1.1% 0.5% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

15 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.5% 1.2% 0.7% 0.5% 0.2% 0.5% 0.3% 0.0% 0.0% 0.0% 0.0%

16 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 0.1% 0.4% 0.6% 0.5% 0.9% 0.0% 0.9% 0.9% 0.0% 0.0% 0.1% 0.0%

17 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 1.4% 0.4% 0.6% 0.8% 0.0% 0.1% 0.3% 0.0%

18 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.8% 1.7% 0.1% 0.7% 0.0% 0.3% 0.8% 0.0%

19 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.4% 0.9% 0.5% 1.7% 0.3% 0.3% 0.0%

20 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.3% 1.8% 0.6% 1.9% 0.0%

21 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 2.8% 1.0% 0.0%

22 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.1% 1.0% 2.6%



Spatial Smoothing + Rule Induction
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 Try to combine both methods, any potential gain?
 Remove the signal accounted for by rule induction, apply spatial smoothing 

on the residuals
 Determine K and p using the same approach: the implied value for K is very 

large, which suggest that there is no signal left in the residuals
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Conclusions
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 Both models validated well when applied to unseen data

 Rule Induction:
• Provides more lift and better fit
• Plain English description for the territories
• Less information required
• May be applied to other states with sparser data
• Easy to extend to other highly dimensional problems (symbols)

 Spatial Smoothing:
• Makes intuitive sense for PPA (driving patterns)
• Requires user selection for distance measure, neighborhood, clustering 

algorithm and number of clusters
• Less transparent, harder to explain
• Challenging to extend to other problems: distance, neighborhood 
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