
Casualty Actuarial Society Automated Vehicle Task Force (CAS AVTF)

Morgan Bugbee, FCAS, MAAA

December 4, 2014

CAS AVTF

<u>Goal</u>

• The CAS AVTF is researching the technology's risks to provide policymakers with the information needed to ensure **the product is brought to market as safely and efficiently as possible.**

Focus

- Pre-market: identify & quantify risks
- Post-market: accurately price the technology
- Post-claim: compensate claimants fairly & efficiently

Summary

- Automated Vehicles Background
- Automated Vehicle Risk Profile
- Vehicle Symbol Analysis
- Regulatory Overview

Automated Vehicles - Background -

Enabling Technology

V2V/V2I: Stands for Vehicle to Vehicle or Vehicle to Infrastructure. Uses Dedicated Short Range Communications (DSRC), similar to wifi, to allow a vehicle to communicate to other vehicles or infrastructure (traffic signals, toll booths, etc).

LIDAR: combination of light and radar, and uses laser light to create 3D images of the surrounding environment.

Historic Developments

2013

- Google surpasses 500K miles
- Oxford creates a \$7,750 self-driving system
- Britain tests on public roads
- Mercedes tests on public roads
- CMU tests on public roads
- Audi receives autonomous car license
- NHTSA issues policy on automated vehicles
- DC passes autonomous car law

2011

 Google surpasses 150K miles
 BMW begins testing self driving car on public roads
 NV passes autonomous car law

2010

Volvo CitySafe standard

2007

CMU wins DARPA Urban Challenge

2005

Stanford wins DARPA Grand Challenge

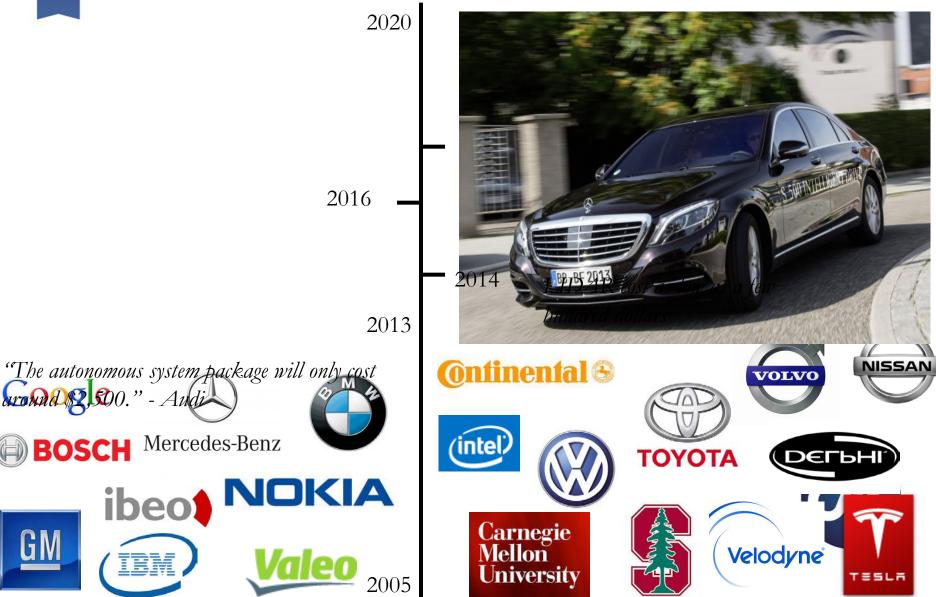
2014

- MI passes law
- NHTSA passes V2V
- Google surpassed 700k miles
- Volvo 'Drive Me' tests in Gothenburg
- Google chauffeured 30 journalists; moved timeline for 2020 release

- Google developing driverless car without steering wheel or brakes

2012

- Google surpasses 300K accident free miles
- Nissan opens research facility in Silicon Valley
- Google & Continental receive autonomous car licenses
- FL & CA pass autonomous car laws


2009

- Google begins testing on public roads
- EU launches Project SARTRE

Timeline

"An autonomous package might only add \$5K -\$7K to the sticker price." – Raj Rajkumar, director of CMU's program

Adoption Patterns: ABS

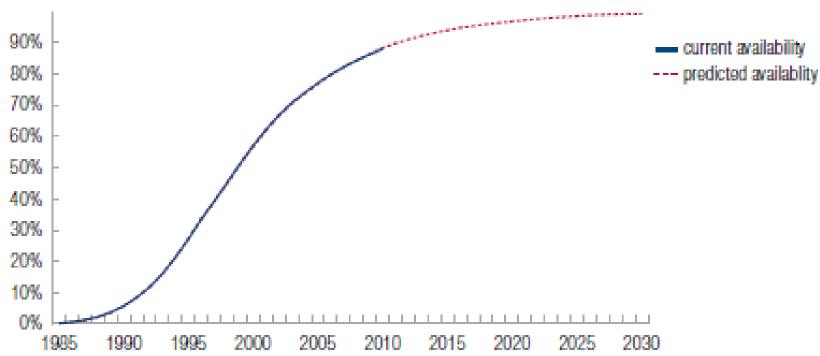
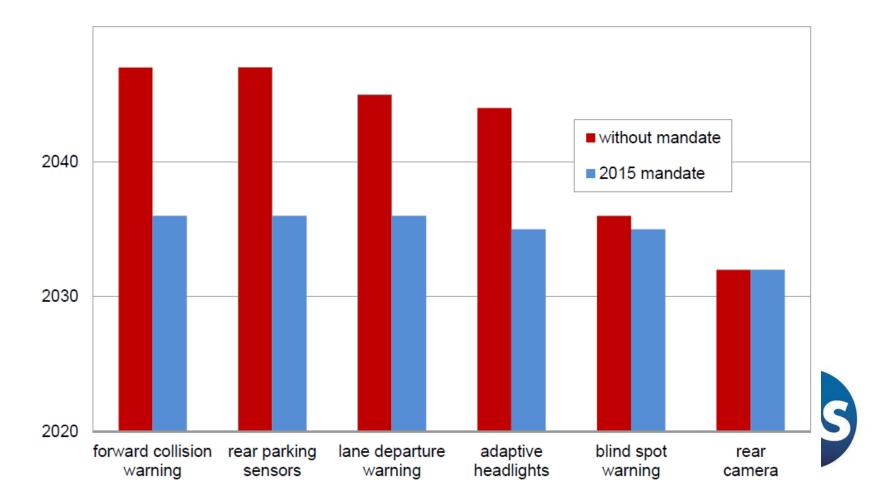
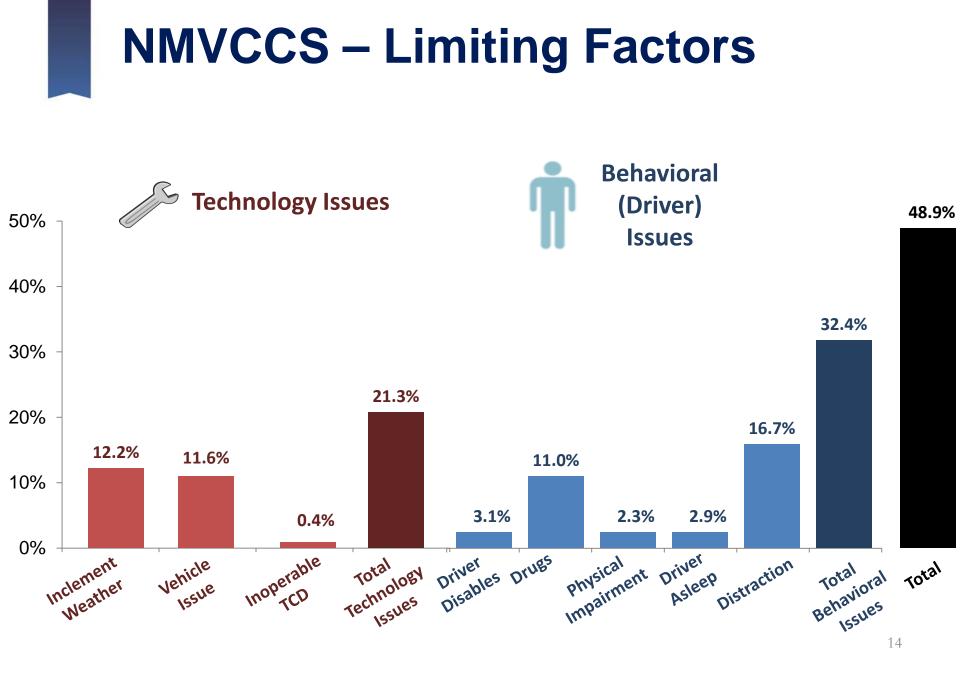



Figure 3: Predicted percentage of registered vehicles with ABS

Adoption Patterns: Newer Technology

Calendar year features reach 95% of registered vehicle fleet with and without mandate

Possible Insurance Frameworks for AVs


- 1. Product Liability
 - Attach major liability to sellers and manufactures of the vehicle
 - Tends to be complex and expensive as the standard to establish a defect is vague/unpredictable
- 2. Strict liability when an AV is at fault
 - Making the owner of the vehicle responsible when the owner's automobile is at fault
- 3. First party insurance
 - Similar to UM coverage, injured parties would look to their own insurers
- 4. A combination of above?

Automated Vehicle Risk Profile

"93% of accidents are caused by human error."

NMVCCS - Implications

- New benchmark should be calculated
 - Data is old and unrepresentative of future market
 - Human driving risks <> automated vehicle risks
- Different tests required for the different risks
 - Computer simulations can prove technology's error rate, but provide little insight into driver's actual use of technology.
- Policy changes can increase AV's safety.
 - Every 1% reduction in accidents corresponds to approx 55K fewer accidents, and \$1.4 billion of economic value per yr.
 - Weigh policy's cost against policy's expected benefits (number and value of accident reduction expected to create)
 - E.g. Driver training program, Automated vehicle only lanes, Allowing the vehicles to speed.

Auto Insurance Analysis - Vehicle Symbol -

Vehicle Symbol Calculation

Approach

- Each vehicle is grouped into an experience group.
 - Each group's experience is weighted and combined with similar vehicles
- There are two complements of credibility:
 - Vehicle's body style factor
 - Prior year factor
- Automated Vehicle Symbol calculation has two options:
 - Option 1: Assume it is a brand new vehicle
 - Option 2: Assume it is an update to a current vehicle

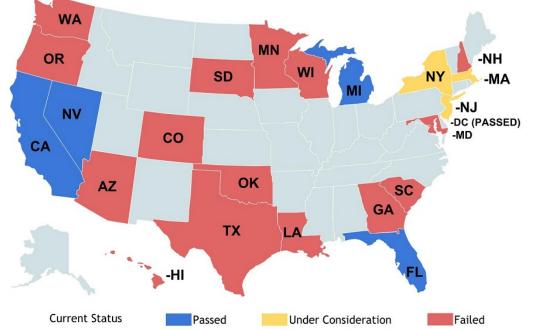
Vehicle Symbol Calculation

• Option 1: rate AV as brand new vehicle (no prior year factor)

- e.g. Mercedes introduces a new fully automated vehicle
- Growth trend impacts credibility

Vehicle Symbol Discount						
# of		Loss Attenuation				
Exposures	Year	0%	25%	50%	75%	100%
2,500	1	0.0%	0.5%	0.9%	1.3%	1.8%
5,000	2	0.0%	1.4%	2.6%	3.9%	5.1%
7,500	3	0.0%	2.8%	5.1%	7.4%	9.7%
10,000	4	0.0%	4.4%	8.0%	11.6%	15.2%
	i -					

Vehicle Symbol Calculation


Option 2: rate AV as current vehicle (actual exposures)
 – e.g. all new Honda Civics sold with AV equipment

Averge Vehicle Symbol Discount					
	Loss Attenuation				
Year	0%	25%	50%	75%	100%
1	0.0%	4.3%	7.4%	10.5%	13.6%
2	0.0%	7.1%	13.7%	20.0%	26.3%
3	0.0%	9.7%	18.2%	25.7%	35.4%
4	0.0%	11.1%	21.0%	31. 0 %	41.2%

Regulatory Overview

Current Regulatory Approach

- States: NV, CA, MI, FL and DC have regulations that permit the operation/testing of autonomous vehicles.
- NHTSA: In May 2013, published a statement with guidance to states on autonomous vehicle regulations. Statement also outlined NHTSA plans for testing autonomous vehicle technology.

Auto Manufacturer Regulations

Consumers protection against auto manufacturer error

- NHTSA establishes regulations that manufacturers must selfcertify with.
- State regulators can impose additional requirements
- Individuals can sue manufacturers if an error occurs
- What happens if automobile accident risk shifts entirely to manufacturers?

Regulatory Approach - Need for change -

- Insufficient protection for consumers and manufacturers
 - Dawson vs. Chrysler
- NHITGE Arge Balarge enough to take over for auto insurance industry.
- NHTSA lacks the same financial incentive insurance companies have to accurately evolute & monitor risk.

Studies

- Pre-market: identify and quantify risks to improve the technology's safety and speed to market
- Post-market: ensure the product is priced accurately
- Post-claim: ensure claimants are compensated fairly and efficiently

Questions and Discussion

NMVCCS - Application

Major Risks			Risk Minimization		NYC Taxi		
Ν	•	Weather	•	Tech/Location/Invest	•	Road magnets	
Μ	•	Vehicle Issues	•	Regular maintenance	•	3 inspections per yr	
V C C	•	Inoperable Infrastructure	•	Restrict location/ Investment	•	Avg trip 2.6 miles	
S	•	Driver Issues	•	Remove driver	•	Increases profit \$38K	
O T	•	Old Technology	•	Mandate software updates	•	Manufacturer owns fleet	
H	•	Animal hits	•	Restrict location	•	Minimal risk	
E R	•	Unavoidable Accidents	•	Limit speed	•	25 mph speed limit 9.5 mph avg speed	

Economics

<u>Costs</u>	NYC Taxi	NYC Uber - AV
• Vehicle	• \$30,000	• \$125,000
Medallion	• \$1,000,000	• \$0
Total Startup	• \$1,030,000	• \$125,000

