

Multivariate Analysis in Territorial Ratemaking

Presented by: Serhat Guven, FCAS, MAAA

> CAS 2004 Fall Meeting November 15, 2004

Agenda

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Background

- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Background

Principles of Territory Ratemaking

- Three Primary Purposes of Risk Classification
 - Protection of Program's Financial Soundness
 - Multidimensional Solutions
 - Economic Incentives
- Statistical Considerations of Risk Classification:
 - Homogeneity
 - Incorporating the Location Dimension
 - Predictive Stability
- Operational Consideration of Territory Ratemaking
 - Avoidance of Extreme Discontinuities
 - Related to Principle of Locality

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Traditional Methods

Indications in the Loss Ratio environment

- Indication (CZP) = f (Losses(CZP)/Premium(CZP))
- f() is a spatially smoothing technique based on Latitude, Longitude coordinate of the countyzip centroid

4

Concerns

- Possible Distributional Biases
- Volatile Results
- Allocates unsystematic risk to the territory variable

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Multivariate Methods: Background

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Classification of Independent Predictors

- Categorical Variables
 - Variables in which the levels take on distinct values
 - Car Type, Gender, Protective Device
- Continuous Variables
 - Variables in which the levels can be quantitatively compared to each other
 - Age of Home, AOI, Insured Age

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Territory Rating - Overview

- Aim is to accurately estimate the underlying risk associated with geographic location in order to predict expected claims experience for a given location
- Normally a two stage process:

7

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Multivariate Methods: Techniques

- How do we obtain the best estimator of relative risk for the allocation process when our data is very sparse at zipcode level?
 - Spatial Curves: Representing geographical location as xy co-ordinates and build as part of GLM
 - Residual Modeling: Spatial smoothing of residuals outside GLM
 - Normalization Modeling: External factors (e.g. sociodemographic) as part of GLM

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Multivariate Methods: Spatial Curves

• Indication (CZP) = GLM (Rating Variables & f(x,y))

- Treat the countyzip xy coordinates as a continuous rating variable
- $f(x,y) = ax + bx^2 + cx^3 + ... + dy + ey^2 + fy^3 + ...$
 - Coefficients a,b,c ... are developed reflecting the multidimensional nature of the rating algorithm with the countyzip concept
 - The x y coordinates of the countyzip combined with the coefficients produces the indicated relativity
- Concerns: Sensitivity
 - Increase the degree of the polynomial
 - Utilize splines to change the curvature while maintaining continuity
 - Nonlinear terms

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Multivariate Methods: Spatial Curves

Indication (CZP) = GLM (Rating Variables & f (Lat, Long)):

f (Lat, Long)= a Lat + b Long

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Multivariate Methods: Spatial Curves

Indication (CZP) = GLM (Rating Variables & f (Lat, Long)):

f (Lat, Long)= aLat + bLat2 + cLat3 + dLong + eLong2 + fLong3

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Multivariate Methods: Spatial Curves

Indication (CZP) = GLM (Rating Variables & f (Lat, Long)):

f (Lat, Long)= Spline(Lat) + Spline(Long)

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Multivariate Methods: Spatial Curves

Indication (CZP) = GLM (Rating Variables & f (Lat, Long)):

f (Lat, Long) = Spline(Lat) + Spline(Long) + g(Lat x Long)

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Multivariate Methods: Residual Modeling

Indications in the GLM Residual environment

- Indication (Boundary) = GLM (Rating Variables & Init Boundary)
- Init Boundary = Cluster (SResidual(CZP))
- SResidual(CZP) = f(Actual(CZP) Modeled (CZP))
- f() is a spatially smoothing technique based on Latitude, Longitude coordinate of the countyzip centroid
- Modeled (CZP) = GLM (Rating Variables excl Territory)
- Concerns
 - Volatile Results
 - To the extent there are distributional biases among other rating variables with location, the residuals do not reflect the entire systematic risk.
 - Allocates unsystematic risk to the territory variable when determining the initial boundaries

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

- Indications in the GLM Standardization environment
 - Indication (Boundary) = GLM (Rating Variables & Boundary)
 - Boundary = Cluster (SStandardizedMetric(CZP))
 - Quantiles
 - Equal Weight
 - Similarity Methods
 - K-means Clustering
 - SStandardizedMetric(CZP) = f(Resp/(Wt(x,y,z,CZP) *ModeledRel (x,y,z)))
 - f() is a spatially smoothing technique
 - Distance Based
 - Adjacency Based
 - Modeled (CZP) = GLM (Rating Variables incl TerritoryProxy)
 - External Data
 - Curves

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Multivariate Methods: Normalization Modeling

- External data, if available, can be used to enhance the initial territory factor
 - Link in via zipcode and assigns a "score" to each zipcode

Examples:

- External Data Provider Scores, e.g. Crime Score based on police crime statistics
- Lifestyle Factors, e.g. Proportion Married, Educational Attainment
- Occupation Factors, e.g. Percentage Unemployed
- Density Factors, e.g. Household Density, Vehicle Density
- Provided the external data is good, should be able to pick out stark borders between neighbours
- However, need to use own data to calibrate the external factors in terms of:
 - Predictiveness
 - Range and steepness of relativities
 - Ability to differentiate between zipcodes (spread of zipcodes between bands)

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

- For each observation, the observed frequency/severity is adjusted to a consistent set of levels for the standard policy factors.
- Use the relativities from the GLM model
- No adjustment is made for any initial grouping of location code
- Can standardize either the observed values or the exposure
 - standardizing exposures means no information is lost when a zipcode had no claims

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Observed Private Car AD Frequency

Standardized Observed Private Car AD Frequency

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

- Distance-Based Spatial Smoothing
 - Advantages
 - Much simpler to implement
 - Disadvantages
 - Takes no account of natural boundaries e.g. rivers, coastline
 - May over smooth urban areas and under smooth rural areas
 - Useful for
 - Windstorm (Homeowners)
- Adjacency-Based Spatial Smoothing
 - Advantages
 - Distribution assumptions allow prior knowledge of claims process to be incorporated
 - Distance can be additionally built in
 - Copes with differences in scale between urban and rural areas
 - rural sectors are larger than urban sectors
 - Disadvantages
 - Artificial boundaries
 - Useful for
 - Auto, Theft (Homeowners)

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Multivariate Methods: Normalization Modeling

Standardized Observed Private Car Theft Frequency

Smoothed 20%

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Multivariate Methods: Normalization Modeling

Standardized Observed Private Car Theft Frequency

Smoothed 40%

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Multivariate Methods: Normalization Modeling

Clustering

🗢 Goal:

- Minimize within-group heterogeneity.
- Maximize cross-group heterogeneity.
- Produce groupings which are predictive in future.
- Basic Methods
 - Quantiles
 - Equal Weight
 - Similarity Methods
 - K-means Clustering

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Multivariate Methods: Normalization Modeling

Clustering

- Quantiles
 - Create groups with equal numbers of observations.
- Equal Weight
 - Create groups which have an equal amount of weight.

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Multivariate Methods: Normalization Modeling

Clustering:

Similarity Methods

- General Approach
 - Rank the data set by the statistic you wish to cluster.
 - Decide on which pair of records are the 'most similar.'
 - Group these records.
 - Repeat until left with the desired number of groups.

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Multivariate Methods: Normalization Modeling

Clustering:

Similarity Methods

- Average Linkage
 - Distance between clusters is the average distance between pairs of observations, one in each cluster.
 - Tends to join clusters with small variances.

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Multivariate Methods: Normalization Modeling

Clustering:

Similarity Methods

- Centroid
 - Distance between clusters is the difference between the mean values of the clusters squared.

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Multivariate Methods: Normalization Modeling

Clustering

K-means

- Rank the observations.
- Split into k groups e.g. using quantile method.
- Calculate the mean value of each group.
- Define group start/end-points as being half-way between adjacent mean values.
- Reallocate each observation.
- Repeat until group start and end-points converge.

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Multivariate Methods: Normalization Modeling

Concerns

- Assessing the appropriateness of the external data
 - Levels of significance within the GLM model
 - Hypothesis Testing: Under the null hypothesis zipcodes with the same external factor score have similar underlying experience
- Assessing the spatial smoothing
 - Hold out samples: difficult due to sparseness of the underlying data in a highly dimensional data space
 - Hypothesis Testing: Under the null hypothesis the p-value should be uniformly spread over [0,1]
- Assessing the clustering
 - Result boundary should be predictive in the GLM model
- Refinement
 - Internal Constraints
 - External Constraints
 - Local Knowledge

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Concerns and Issues

- Defining the Location Predictor:
 - Countyzip units
 - Easy to obtain
 - Definitions unstable over time
 - Responsive?
 - Census tract units
 - Definitions stable over time (change once every ten years)
 - System issues regarding mappings
 - Responsive?
- Defining the continuity
 - Actual centroid of the unit
 - Population weighted centroid of the unit
 - Implement actual Latitude/Longitude coordinates
 - Build company specific coordinate system

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Concerns and Issues

- Implementing the results
 - Directly incorporating the metric into a rating algorithm at the unit level
 - Aggregating granular results into a boundary
 - "One Way" Aggregations
 - GLM Aggregation

- Background
- Traditional Methods
- Multivariate Methods
- Concerns and Issues
- Results

Results

- Isolation of the geographic risk requires the use of multidimensional model.
- Principle of locality allows us to view the geographic risk as a continuous concept.
- Territory Ratemaking Techniques:
 - Use spatial polynomial curves in a GLM to develop indications for the geographic risk.
 - Residuals approaches provide an additional degree of responsiveness to the modeling procedure
 - Normalization techniques adjust for the distributional approach between other rating variables and the location predictor
 - Need to be able to study a variety of spatial smoothing and clustering techniques

Questions?