TOWERS

Internal Stochastic Risk Models

CAS Annual Meeting -- Chicago

Stephen Lowe

12 November 2007

Why build an internal stochastic EC/RBC model?

- The calibration of the standard factor approach (used by NAIC, Solvency II, AMB, S&P) may be set conservatively
 - Rating agencies and regulators will ultimately give credit in their ratings for internal capital models
 - Insurers without internal stochastic models will be handicapped by higher capital requirements
- Improves perception of company with the rating agencies and regulators
- Insurers need internal models to compete effectively
 - Internal models can reflect the actual risks more accurately
 - Internal models are an integral part of advanced risk management; can be a source of advantage

S&P has established criteria for reviewing internal company EC models

- Multiple risk measures used
- Encompassing all major risks; both gross and net
- Explicit calculation of diversification benefit with conservative tail correlation
- Robustness
- Validation testing and methodology
- ECM used for strategic risk management

S&P has indicated that a strong ERM rating requires an internal stochastic model

- "Companies that use standard [RBC] formulas without modifications will be likely to make poor decisions... If companies use these standard formulas without modification, S&P will view this as a weak [ERM] practice."
- "Some companies have risk positions that are so complex that simple linear formulas are not adequate to estimate risk capital accurately."

Solvency II requirements for internal models will be demanding

Use Test

- Widely used, important role in risk management, decision-making and capital allocation within company
- Frequency of calculation consistent with frequency of use
- Responsibility of management

Statistical Quality

- Current, credible, realistic, justified assumptions
- Complete and appropriate data
- Consistent ranking of risks for use test and decision-making
- Adequate measurement of diversification benefits
- Reasonable management actions, with regard to time-to-implement

Solvency II requirements for internal models will be demanding

Calibration Standards	 VaR favoured as risk measure Flexibility but must be at least equivalent to 99.5% VaR over 1 year
P&L Attribution	 Analysis of profit and loss by source for each major Business Unit Link risk categories and sources of profit and loss
Validation Standards	 Regular validation cycle, including performance of internal model, appropriateness, testing against experience Effective statistical processes to demonstrate appropriateness Analysis of actual versus expected

Being clear with terminology — what is an internal model under Solvency II?

Internal model = economic capital + risk management processes

An 'internal' model needs to be demonstrably embedded and should be consistent with the firm's approach to enterprise risk management

Approaches to EC present a spectrum of systems requirements and sophistication

Stochastic models come in two loosely defined categories

Statistical models

- Described entirely by a set of random variables
- Each variable has an associated distribution and parameters
- Correlation is specified via copulas
- Example: tornado loss model

Structural models

- Described by system of equations that specify deterministic interactions, and random elements
- Volatility can vary over time and be state-specific
- Correlations are emergent properties
- Example: hurricane loss model

Statistical approach can be used to optimize property reinsurance retentions

Risk has structure, due to underlying systemic drivers

Inter-temporal

- Reversion to normative conditions
- Momentum induces cyclical behavior

Inter-variable

- Risk premia across asset class returns
- Purchase power parity across currencies
- Inflation impact on loss costs

To manage the risks of an insurer, we need a multi-period economic model that robustly captures the structure of the key elements of systemic risk

Economic scenarios can be used to introduce structure to the model

"Risk Drivers"

Our Global CAP:Link economic scenario generator is a system of stochastic equations

Stochastic equations generate time series for each variable:

- Models the change in a variable, as a function of a deterministic system and a stochastic overlay
- The equation creates a direct link between
 - the variable through time
 - other variables in the system
 - the random nature of the variable

Stochastic equations produce a plausible set of scenarios for all systemic risk variables

Global CAP:Link Scenario of Interest and Inflation Rates for Ten Years

Case study: what is the asset mix that minimizes the risk to an excess WC insurer?

- A matched set of Treasury bonds?
- What are the drivers of risk?
 Medical inflation drives ultimate claim costs
 Inflation and interest rates are linked
 Equity returns are linked to inflation
 Minimum risk position includes equities, as a natural hedge against inflation