TOWERS

CAS Annual Meeting ROC Solid Reserves

ROC/GIRO Working Party: Reserve Uncertainty Mack Reserve Ranges

Daniel Murphy, FCAS, MAAA

November 14, 2007

- Four suggestions:
- 1. Mack's formula is an approximation of the standard error of the unpaid claim estimate
- 2. Mack's heuristic for the standard error of the development in the last period may be too low
- 3. Student-T instead of Normal, Log-T instead of Lognormal, or other distribution
- 4. Regression tends to "over fit" the data for prediction purposes

But first, Mack's model

These three assumptions comprise "the model" which forms the basis of Mack's formulas (see his 1993 paper)

(CL1)
$$E(C_{i,k+1} | \text{the triangle}) = C_{ik} f_k$$

(CL2) $Var(C_{i,k+1} | \text{the triangle}) = C_{ik}\sigma_k^2$ for unknown parameters σ_k^2

(CL3) accident years are independent

From those assumptions, he derives that

$$\hat{mse}(\hat{C}_{iI}) = \hat{C}_{iI}^{2} \sum_{k=I+1-i}^{I-1} \frac{\hat{\sigma}_{k}^{2}}{\hat{f}_{k}^{2}} \left[\frac{1}{\hat{C}_{ik}} + \frac{1}{\sum_{j=1}^{I-k} C_{jk}} \right]$$

where

$$\hat{\sigma}_{k}^{2} = \frac{1}{I - k - 1} \sum_{i=1}^{I - k} C_{ik} \left(\frac{C_{i,k+1}}{C_{ik}} - \hat{f}_{k} \right)^{2}$$

the "f-hats" are the weighted average link ratios, and the "C-hats" are the chain ladder estimates of ultimate loss for accident yr *I*.

Mack's formula is an approximation

1. Mack's Missing Term

- Mack's follow-up 1999 paper gave a recursive version of his closed form formula above
- A re-derivation of his recursive formulas from first principals yields a formula that has an extra cross-product term
 - See Buchwalder, Bühlmann, et al, "The Mean Square Error of Prediction in the Chain Ladder Reserving Method (Mack and Murphy Revisited)," Astin 2006
 - Murphy, "Chain Ladder Reserve Risk Estimators," CAS eForum August 2007
- Impact of missing term is inconsequential for well-behaved triangles (small CVs)

An example

Mack vs. Murphy Formulas Taylor & Ashe data analyzed by Mack (1993)

AY/DY	1	2	3	4	5	6	7	8	9	10
i/k	k=1	k=2	k=3	k=4	k=5	k=6	k=7	k=8	k=9	k=10
i=1	357,848	1,124,788	1,735,330	2,218,270	2,745,596	3,319,994	3,466,336	3,606,286	3,833,515	3,901,463
i=2	352,118	1,236,139	2,170,033	3,353,322	3,799,067	4,120,063	4,647,867	4,914,039	5,339,085	5,433,719
i=3	290,507	1,292,306	2,218,525	3,235,179	3,985,995	4,132,918	4,628,910	4,909,315	5,285,148	5,378,826
i=4	310,608	1,418,858	2,195,047	3,757,447	4,029,929	4,381,982	4,588,268	4,835,458	5,205,637	5,297,906
i=5	443,160	1,136,350	2,128,333	2,897,821	3,402,672	3,873,311	4,207,459	4,434,133	4,773,589	4,858,200
i=6	396,132	1,333,217	2,180,715	2,985,752	3,691,712	4,074,999	4,426,546	4,665,023	5,022,155	5,111,171
i=7	440,832	1,288,463	2,419,861	3,483,130	4,088,678	4,513,179	4,902,528	5,166,649	5,562,182	5,660,771
i=8	359,480	1,421,128	2,864,498	4,174,756	4,900,545	5,409,337	5,875,997	6,192,562	6,666,635	6,784,799
i=9	376,686	1,363,294	2,382,128	3,471,744	4,075,313	4,498,426	4,886,502	5,149,760	5,544,000	5,642,266
i=10	344,014	1,200,818	2,098,228	3,057,984	3,589,620	3,962,307	4,304,132	4,536,015	4,883,270	4,969,825
LDFs	3.491	1.747	1.457	1.174	1.104	1.086	1.054	1.077	1.018	1.000
CDFs	14.447	4.139	2.369	1.625	1.384	1.254	1.155	1.096	1.018	1.000
$\sigma_k^{\ 2}$	160,280	37,737	41,965	15,183	13,731	8,186	447	1,147	447	

Mack vs. Murphy Formulas Taylor & Ashe data analyzed by Mack (1993)

	Chain	Chain Ladder Method: Standard Error of Estimated Liability										
Origination	N	Mack Formul	a	Murphy Formula								
Year	Process	Parameter	Total	Process	Parameter	Total						
i=2	48,832	57,628	75,535	48,832	57,628	75,535						
i=3	90,524	81,338	121,699	90,524	81,340	121,700						
i=4	102,622	85,464	133,549	102,622	85,467	133,551						
i=5	227,880	128,078	261,406	227,880	128,091	261,412						
i=6	366,582	185,867	411,010	366,582	185,907	411,028						
i=7	500,202	248,023	558,317	500,202	248,110	558,356						
i=8	785,741	385,759	875,328	785,741	385,991	875,430						
i=9	895,5 70	375,893	971,258	895,570	376,222	971,385						
i=10	1,284,882	455,270	1,363,155	1,284,882	455,957	1,363,385						
Total:	1,878,292	1,568,532	2,447,095	1,878,292	1,569,349	2,447,618						

- Mack and Murphy process risk estimates are identical
- Differences in parameter risk occur, at most, only in the 3rd or 4th significant digit
- Mack and Murphy overall CV's are virtually identical 13.1%
- See http://www.casact.org/pubs/forum/07sforum/07s-murphy.pdf

Mack's heuristic for the last development period's variance

2. Heuristic for σ^2 of last development period may be too restrictive

For the last link ratio where there is only one observation, Mack suggests a heuristic for imputing variability from its neighbors

AY/DY	6	7	8	9	10
i/k	k=6	k=7	k=8	k=9	k=10
i=1	3,319,994	3,466,336	3,606,286	3,833,515	3,901,463
i=2	4,120,063	4,647,867	4,914,039	5,339,085	5,433,719
i=3	4,132,918	4,628,910	4,909,315	5,285,148	5,378,826
i=4	4,381,982	4,588,268	4,835,458	5,205,637	5,297,906
i=5	3,873,311	4,207,459	4,434,133	4,773,589	4,858,200
LDFs	1.086	1.054	1.077	1.018	1.000
CDFs	1.254	1.155	1.096	1.018	1.000
σ_k^2	8,186	447	1,147	447	
A	,		,		

 $\sigma_9^2 = \min(1447^2 / 447, \min(447, 1147)) = 447$

- If σ_9^2 =1147, Mack's CV would increase by 4% (to 13.6%)
- By the way, Bootstrap allows the residuals throughout the triangle to be sampled in the last position, potentially explaining Bootstrap's CVs higher than Mack's

Replace lognormal with another distribution

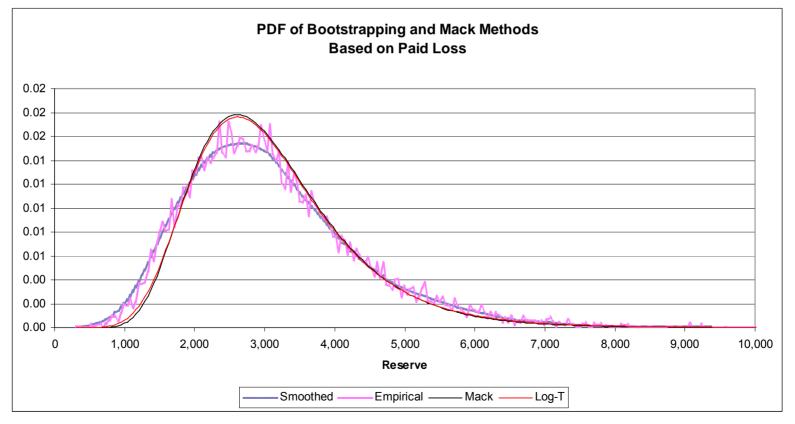
3. Lognormal / Normal Are Inappropriate Distributions

- It is an elementary statistics principal that when the standard deviation is unknown but is estimated from the data, then the Normal distribution understates the width of estimated confidence intervals
 - The Student-T is the appropriate distribution to use
- The Log-T is the analogous distribution when the underlying distribution is Lognormal (see Michael Wacek's papers on the CAS site)
- Different, more skewed distributions may be utilized
 - By matching higher moments?
- An example

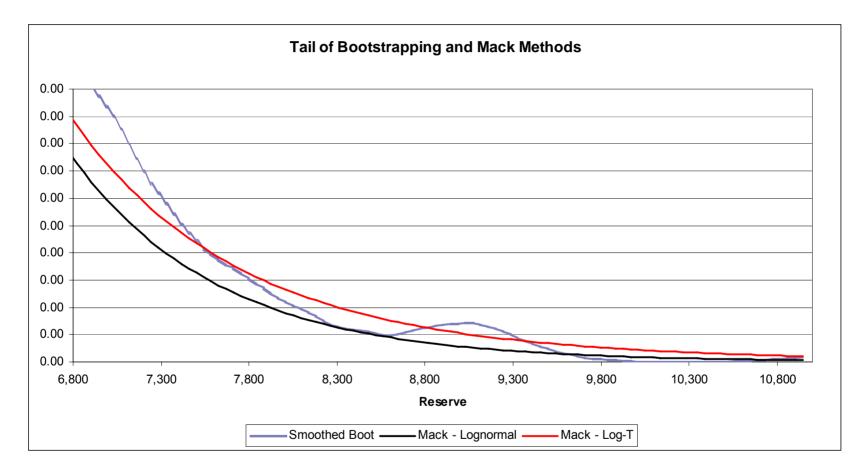
Small Liability Triangle

Paid Loss

Accident		Evaluation Age in Months								
Period	12	24	36	48	60	72	84	96	108	
1998	460	1,412	1,955	2,092	2,102	2,592	2,649	2,861	3,004	
1999	655	1,184	1,624	1,675	1,800	1,831	1,838	1,985		
2000	228	680	780	786	862	863	863			
2001	680	968	1,594	1,656	1,673	1,648				
2002	184	1,081	1,210	1,235	1,260					
2003	263	681	998	1,256						
2004	82	194	506							
2005	175	602								
2006	357									


Accident		Age Interval in Months									
Period	12 - 24	24 - 36	36 - 48	48 - 60	60 - 72	72 - 84	84 - 96	96 - 108	108 - Ult		
1998	3.287	3.070	1.070	1.005	1.233	1.022	1.080	1.050			
1999	1.808	1.372	1.031	1.075	1.017	1.004	1.080				
2000	2.982	1.147	1.008	1.097	1.001	1.000					
2001	1.865	1.257	1.039	1.010	.985						
2002	5.875	1.119	1.021	1.020							
2003	2.589	1.465	1.259								
2004	2.366	2.608									
2005	3.440										
2006											

Volume Weighted	Average All V	alues	


2.641 1	.313 [·]	1.066	1.034	1.077	1.012	1.080	1.050	1.000
---------	-------------------	-------	-------	-------	-------	-------	-------	-------

Small Liability Triangle

			Percentile			
Estimated Unpaid Claims	Mean	SE	0.90	0.99	0.995	
(1) Paid Bootstrap Method on Weighted Average Factors	3,095	1,230	4,731	6,826	7,318	
(2) Paid Mack Method on Weighted Average Factors	3,095	1,107	4,546	6,531	7,121	
(3) Paid Mack Method using Log-T distribution	3,095	1,107	4,566	6,820	7,585	

Small Triangle – Tail of the Estimated Liabilities

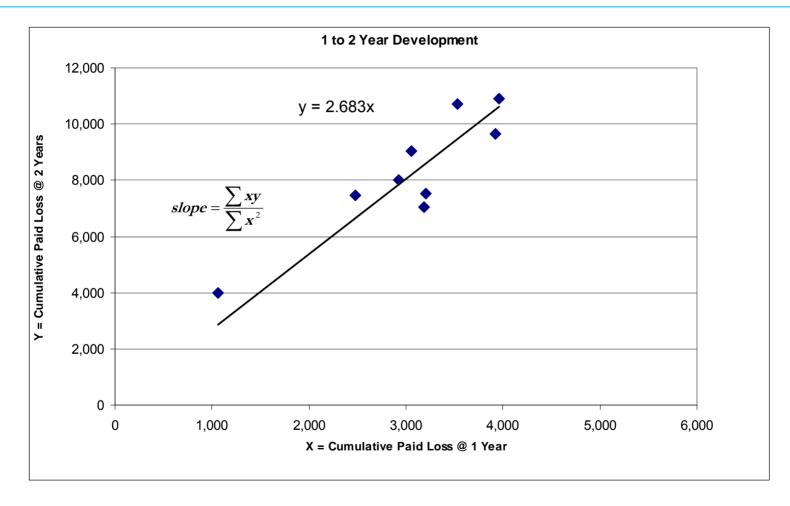
For degrees of freedom: there are n=36 observed link ratios and p=8 estimated parameters, so df=n-p=28

Mack's model is equivalent to regression, so can understate projection variability

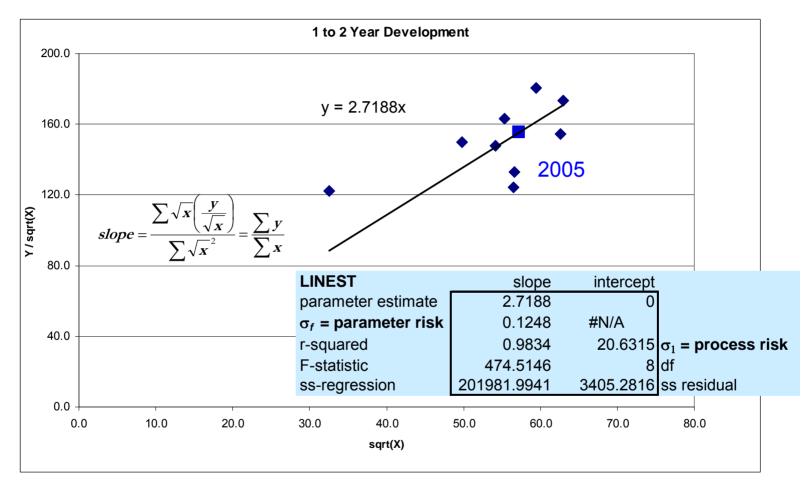
4. Mack's model and regression

- Mack's model can be written $Y = f \cdot X + e$ where $Var(e) = X\sigma^2$
- Divide both sides by the square root of X and you have a linear regression model with intercept through the origin
 - Solution for the slope *f* of the regression line is the weighted average link ratio
 - Also produces an estimate of the parameter risk of *f* and of the process risk σ^2 , both of which agree with Mack's formulas
- Point is: since Mack's method is equivalent to a regression model, it is subject to all the vagaries of regression
 - One of the recognized problems with doing *projections* from linear regressions is that the regression solution can understate *projection* variability
 - A potential work-around: Cross-Validation (cf. http://www.autonlab.org/tutorials/overfit.pdf)
 - An example

Mack and regression – an example

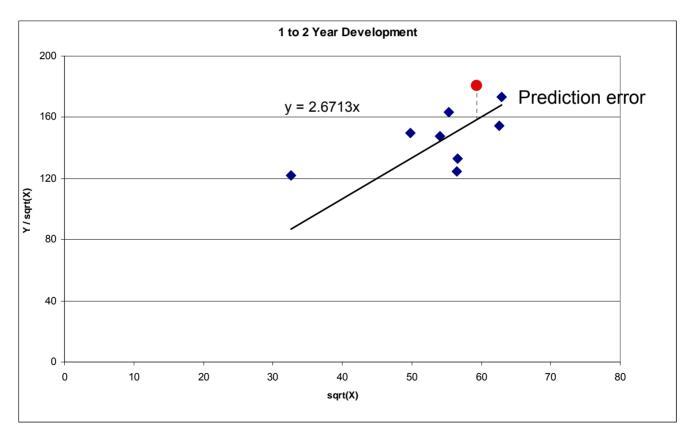

Industry Workers Compensation Paid Net Loss and DCC

Accident	Age (years)										
Year	<u>1</u>	<u>2</u>	<u>3</u>	<u>4</u>	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	<u>9</u>	<u>10</u>	
1996	1,062	3,978	12,068	13,791	14,975	15,710	16,294	16,681	17,007	17,315	
1997	3,920	9,667	12,813	14,662	15,786	16,624	17,207	17,736	18,109		
1998	3,960	10,896	13,874	15,657	17,018	17,957	18,672	19,233			
1999	3,202	7,515	13,988	16,143	17,361	18,127	18,798				
2000	2,927	7,999	15,214	17,426	18,850	19,705					
2001	3,056	9,027	16,249	18,746	19,823						
2002	2,479	7,455	15,628	17,943							
2003	3,528	10,723	15,371								
2004	3,191	7,030									
2005	3,274										


Link Ratios

Accident		Development Periods											
Year	<u>1 to 2</u>	<u>2 to 3</u>	<u>3 to 4</u>	<u>4 to 5</u>	<u>5 to 6</u>	<u>6 to 7</u>	<u>7 to 8</u>	<u>8 to 9</u>	<u>9 to 10</u>				
1996	3.746	3.033	1.143	1.086	1.049	1.037	1.024	1.020	1.018				
1997	2.466	1.325	1.144	1.077	1.053	1.035	1.031	1.021					
1998	2.752	1.273	1.129	1.087	1.055	1.040	1.030						
1999	2.347	1.861	1.154	1.075	1.044	1.037							
2000	2.733	1.902	1.145	1.082	1.045								
2001	2.954	1.800	1.154	1.057									
2002	3.007	2.096	1.148										
2003	3.039	1.434											
2004	2.203												
Weighted													
Average	2.7188	1.7128	1.1456	1.0766	1.0492	1.0373	1.0283	1.0203	1.0181				

Mack and regression – an example 12 – 24 months of development


Mack and regression – an example With transformed data, slope = wtd avg

Question is: How good is that fit for the projection of accident year 2005?

Mack and regression – an example Error of fitted data understates prediction fit

- Leave-One-Out Cross-Validation
 - Exclude data point, fit regression to remaining points
 - Measure the prediction error of omitted point
 - Repeat

ROC Solid Reserves: Mack Method Wrap-up

- Mack's analytic method is as basic as measuring the standard deviation of a sample
- Mack's model is equivalent to regression
 - A useful analytical tool in a wide variety of applications
 - Subject to potentially understated prediction errors
- Actuaries may want to fine-tune their Mack implementations to incorporate some basic statistical principals
 - Student-T, Log-T
 - Utilize other distributions
 - Borrow statistical methodologies from other sciences (e.g., cross-validation)
- Caution against extrapolating beyond the data