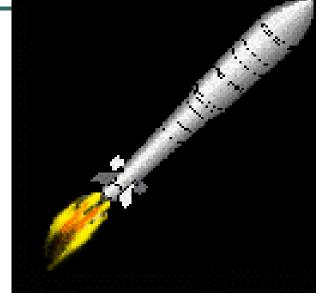
Distinguishing the Forest from the Trees 2008 CAS Fall Meeting

Richard Derrig, PhD, Opal Consulting www.opalconsulting.com Louise Francis, FCAS, MAAA Francis Analytics and Actuarial Data Mining, Inc. www.data-mines.com

Data Mining

 Data Mining, also known as Knowledge-Discovery in Databases (KDD), is the process of automatically searching large volumes of data for patterns. In order to achieve this, data mining uses computational techniques from statistics, machine learning and pattern recognition.


www.wikipedia.org

A Casualty Actuary's Perspective on Data Modeling

- The Stone Age: 1914 …
 - Simple deterministic methods
 - Use of blunt instruments: the analytical analog of bows and arrows
 - Often ad-hoc
 - Slice and dice data
 - Based on empirical data little use of parametric models
- The Pre Industrial age: 1970 …
 - Fit probability distribution to model tails
 - Simulation models and numerical methods for variability and uncertainty analysis
 - Focus is on underwriting, not claims
- The Industrial Age 1985 …
 - Begin to use computer catastrophe models
- The 20th Century 1990...
 - European actuaries begin to use GLMs
- The Computer Age 1996...
 - Begin to discuss data mining at conferences
 - At end of 20st century, large consulting firms starts to build a data mining practice
- The Current era A mixture of above
 - In personal lines, modeling the rule rather than the exception
 - Often GLM based, though GLMs evolving to GAMs
 - Commercial lines beginning to embrace modeling

Why Predictive Modeling?

- Better use of data than traditional methods
- Advanced methods for dealing with messy data now available
- Decision Trees a popular form of data mining

Real Life Insurance Application – The "Boris Gang"

🔞 New York Fraud Ring No Surprise to Russian Drivers

By SABRINA TAVERNISE

New Yorkers may have been shocked by news of an insurance scheme that involved fake car crashes. But in Russia, fraud is a rule of the road.

August 16, 2003 | WORLD | NEWS MORE ON ORGANIZED CRIME AND: FRAUDS AND SWINDLING, FOREIGN BANK ACCOUNTS, AUTOMOBILE INSURANCE AND LIABILITY, STATE FARM INSURANCE COS, NEW YORK CITY, RUSSIA, LONG ISLAND (NY)

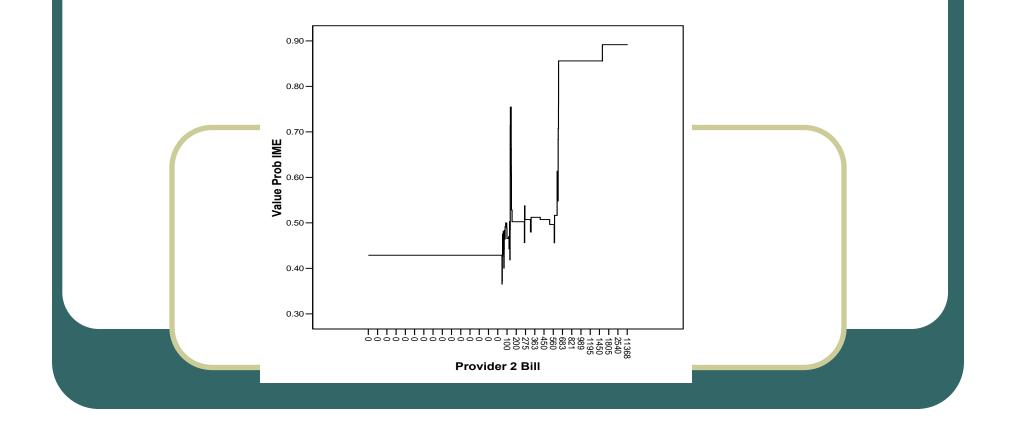
🕫 Investigators Say Fraud Ring Staged Thousands of Crashes

By PATRICK HEALY

The ring used Russian immigrants to stage car accidents and then employed its own network of doctors and fake clinics in New York State to bilk an insurance company out of \$48 million.

August 13, 2003 | FRONT PAGE | NEWS

MORE ON ORGANIZED CRIME AND: ACCIDENTS AND SAFETY, FRAUDS AND SWINDLING, FOREIGN BANK ACCOUNTS, CHILDREN AND YOUTH, AGED, WOMEN, AUTOMOBILE INSURANCE AND LIABILITY, SPOTA, THOMAS J, STATE FARM INSURANCE COS, NEW YORK CITY, RUSSIA, WESTCHESTER COUNTY (NY), LONG ISLAND (NY), SWITZERLAND


Desirable Features of a Data Mining Method:

- Any nonlinear relationship can be approximated
- A method that works when the form of the nonlinearity is unknown
- The effect of interactions can be easily determined and incorporated into the model
- The method generalizes well on out-of sample data

Nonlinear Example Data

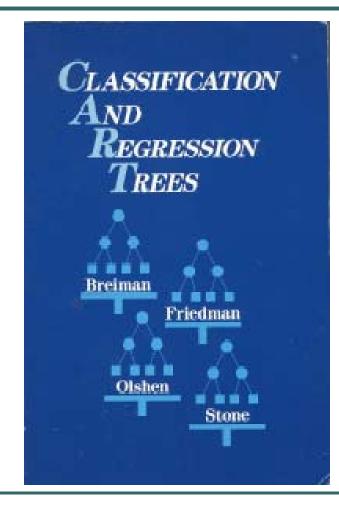
Provider 2 Bill (Binned)	Avg Provider 2 Bill	Avg Total Paid	Percent IME
Zero	-	9,063	6%
1 – 250	154	8,761	8%
251 – 500	375	9,726	9%
501 – 1,000	731	11,469	10%
1,001 – 1,500	1,243	14,998	13%
1,501 – 2,500	1,915	17,289	14%
2,501 - 5,000	3,300	23,994	15%
5,001 - 10,000	6,720	47,728	15%
10,001 +	21,350	83,261	15%
All Claims	545	11,224	8%

An Insurance Nonlinear Function: Provider Bill vs. Probability of Independent Medical Exam

The Fraud Surrogates used as Dependent Variables

- Independent Medical Exam (IME) requested; IME successful
- Special Investigation Unit (SIU) referral;
 SIU successful
- Data: Detailed Auto Injury Claim Database for Massachusetts
- Accident Years (1995-1997)

Predictor Variables

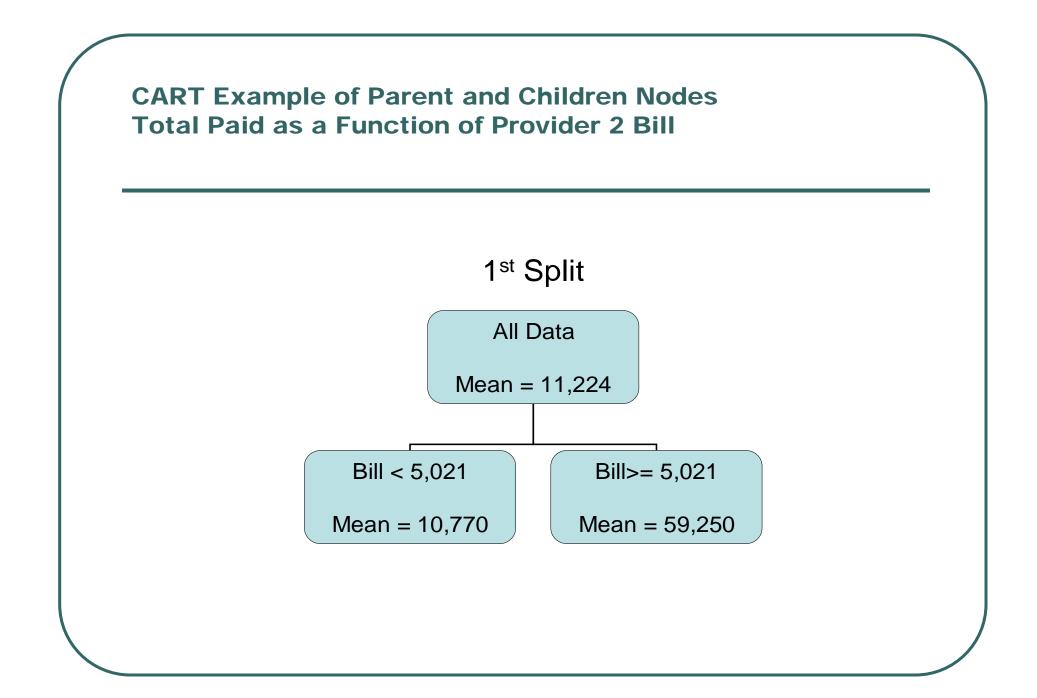

- Claim file variables
 - Provider bill, Provider type
 - Injury
- Derived from claim file variables
 - Attorneys per zip code
 - Docs per zip code
- Using external data
 - Average household income
 - Households per zip

Decision Trees

 In decision theory (for example risk management), a decision tree is a graph of decisions and their possible consequences, (including resource costs and risks) used to create a plan to reach a goal. Decision trees are constructed in order to help with making decisions. A decision tree is a special form of tree structure.

• www.wikipedia.org

The Classic Reference on Trees Brieman, Friedman Olshen and Stone, 1993

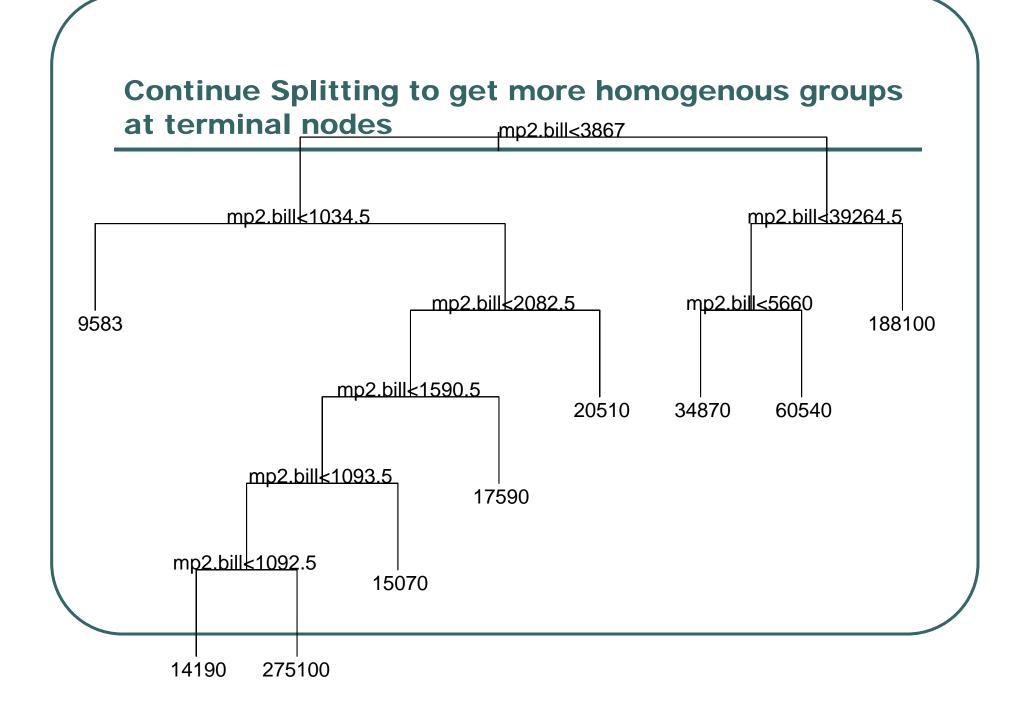


Regression Trees

- Tree-based modeling for *continuous* target variable
 - most intuitively appropriate method for loss ratio analysis
- Find split that produces greatest separation in

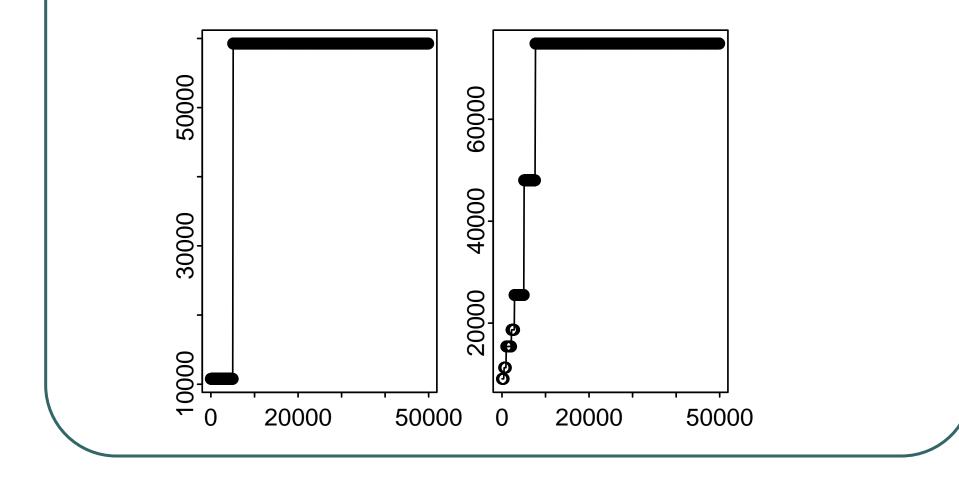
 $\sum [y - E(y)]^2$

- i.e.: find nodes with minimal within variance
 - and therefore greatest between variance
 - like credibility theory i.e.: find nodes with minimal within variance
- Every record in a node is assigned the same expectation → model is a step function

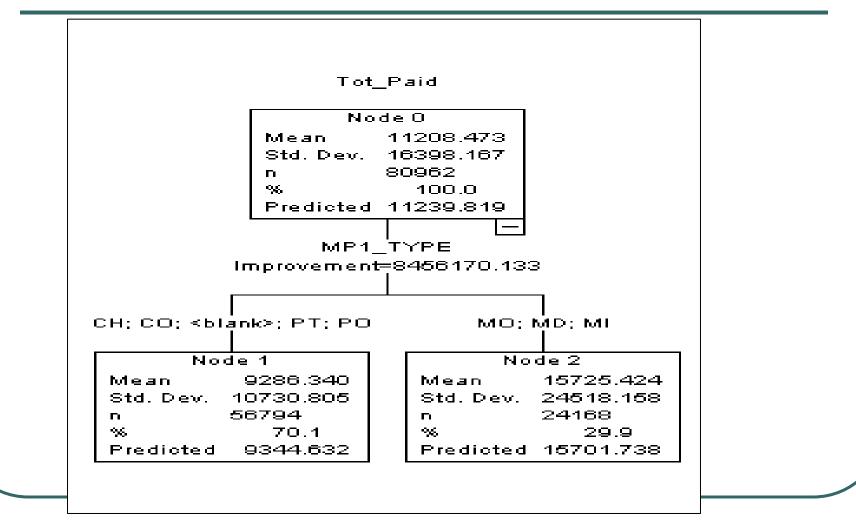


Decision Trees Cont.

- After splitting data on first node, then
 - Go to each child node
 - Perform same process at each node, i.e.
 - Examine variables one at a time for best split
 - Select best variable to split on
 - Can split on different variables at the different child nodes


Classification Trees: Categorical Dependent

- Find the split that maximizes the difference in the probability of being in the target class
- Find split that minimizes *impurity*, or number of records not in the dominant class for the node
- Common goodness of fit measures are GINI index and entropy (deviance)



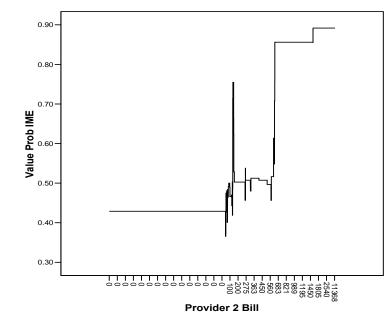
CART Step Function Predictions with One Numeric Predictor

Total Paid as a Function of Provider 2 Bill

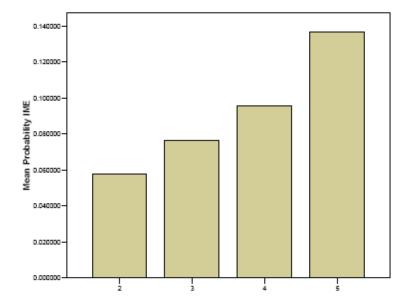
Recursive Partitioning: Categorical Variables

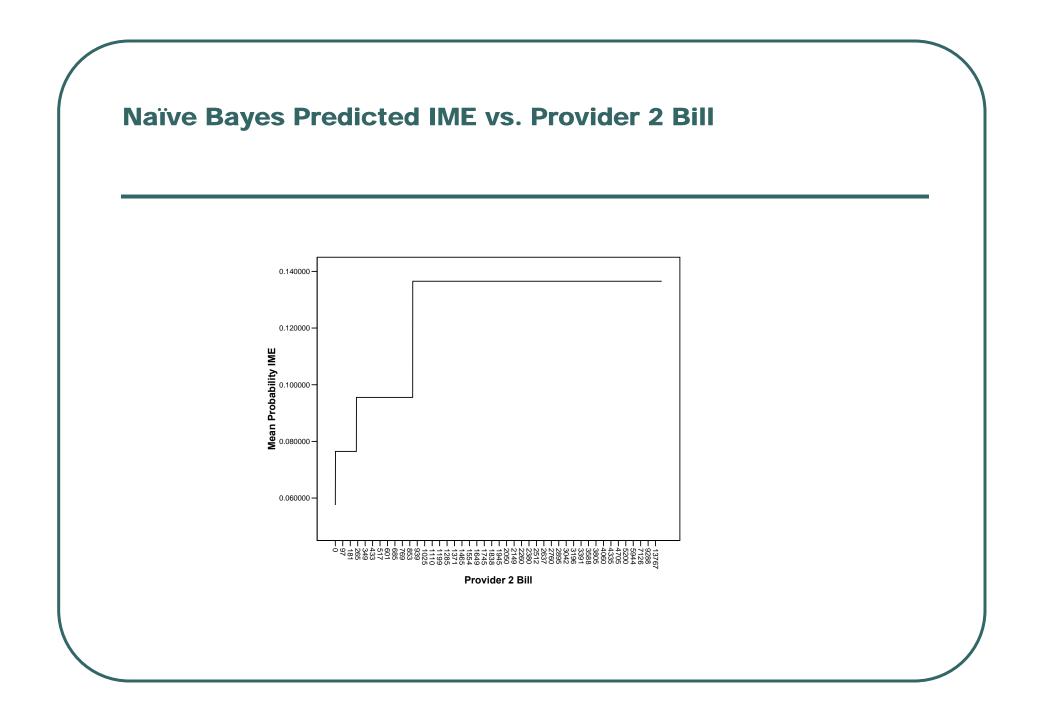

Different Kinds of Decision Trees

- Single Trees (CART, CHAID)
- Ensemble Trees, a more recent development (TREENET, RANDOM FOREST)
 - A composite or weighted average of many trees (perhaps 100 or more)
 - There are many methods to fit the trees and prevent overfitting
 - Boosting: Iminer Ensemble and Treenet
 - Bagging: Random Forest


The Methods and Software Evaluated

- 1) TREENET
- 2) Iminer Tree
- 3) SPLUS Tree
- 4) CART


- 5) Iminer Ensemble
- 6) Random Forest
- 7) Naïve Bayes (Baseline)
- 8) Logistic (Baseline)



Ensemble Prediction of IME Requested

Bayes Predicted Probability IME Requested vs. Quintile of Provider 2 Bill

The Fraud Surrogates used as Dependent Variables

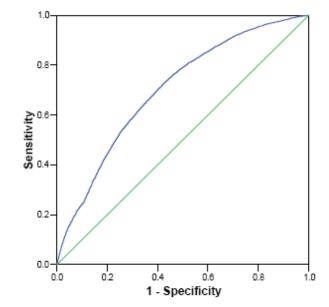
- Independent Medical Exam (IME) requested
- Special Investigation Unit (SIU) referral
- IME successful
- SIU successful
- DATA: Detailed Auto Injury Claim Database for Massachusetts
- Accident Years (1995-1997)

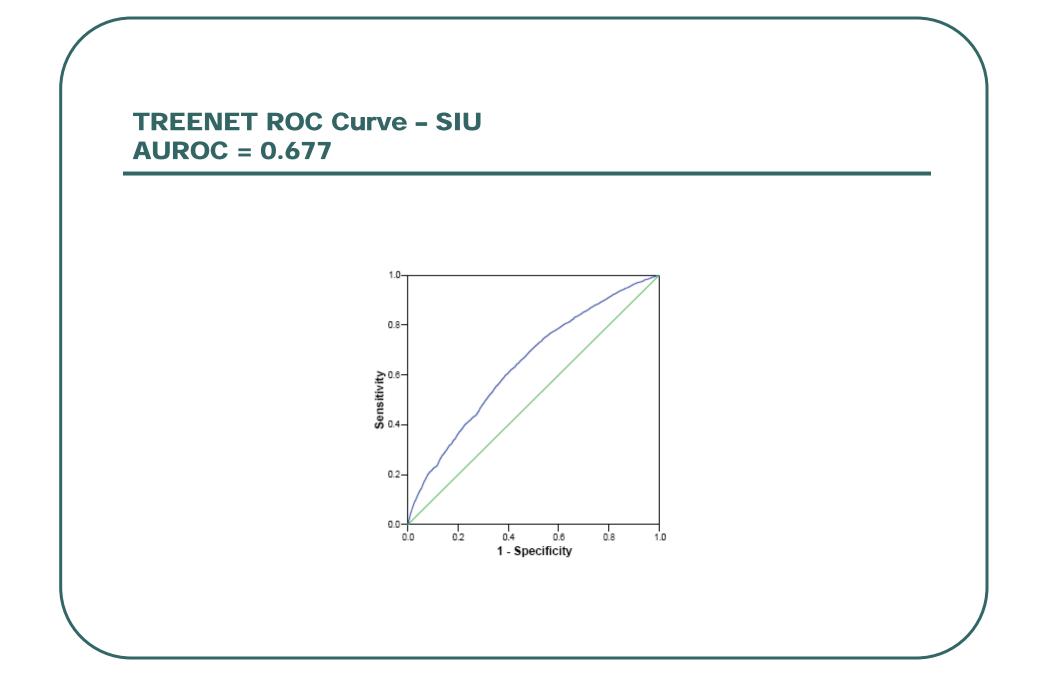
Results for IME Requested

Area Under the ROC Curve – IME Decision					
	CART Tree	S-PLUS Tree	Iminer Tree	TREENET	
AUROC	0.669	0.688	0.629	0.701	
Lower Bound	0.661	0.680	0.620	0.693	
Upper Bound	0.678	0.696	0.637	0.708	
	Iminer Ensemble	Random Forest	Iminer Naïve Bayes	Logistic	
AUROC	0.649	703	0.676	0.677	
Lower Bound	0.641	695	0.669	0.669	
Upper Bound	0.657	711	0.684	0.685	

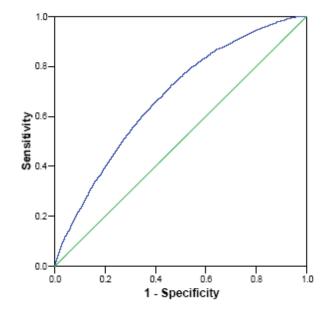
Results for IME Favorable

Area Under the ROC Curve – IME Favorable					
	CART Tree	S-PLUS Tree	Iminer Tree	TREENET	
AUROC	0.651	0.664	0.591	0.683	
Lower Bound	0.641	0.653	0.578	0.673	
Upper Bound	0.662	0.675	0.603	0.693	
	Iminer Ensemble	Random Forest	Iminer Naïve Bayes	Logistic	
AUROC	0.654	0.692	0.670	0.677	
Lower Bound	0.643	0.681	0.660	0.667	
Upper Bound	0.665	0.702	0.681	0.687	

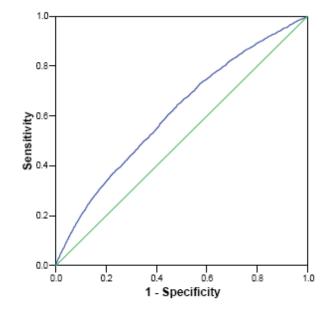

Results for SIU Referral


Area Under the ROC Curve – SIU Decision					
	CART	S-PLUS			
	Tree	Tree	Iminer Tree	TREENET	
AUROC	0.607	0.616	0.565	0.643	
Lower Bound	0.598	0.607	0.555	0.634	
Upper Bound	0.617	0.626	0.575	0.652	
	Iminer	Random	Iminer		
	Ensemble	Forest	Naïve Bayes	Logistic	
AUROC	0.539	0.677	0.615	0.612	
Lower Bound	0.530	0.668	0.605	0.603	
Upper Bound	0.548	0.686	0.625	0.621	

Results for SIU Favorable

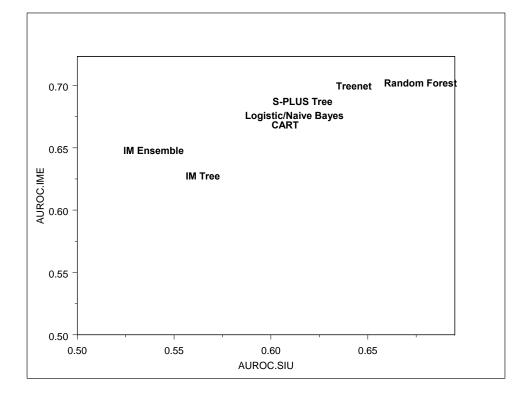

Area Under the ROC Curve – SIU Favorable					
	CART	S-PLUS			
	Tree	Tree	Iminer Tree	TREENET	
AUROC	0.598	0.616	0.547	0.678	
Lower Bound	0.584	0.607	0.555	0.667	
Upper Bound	0.612	0.626	0.575	0.689	
	Iminer	Random	Iminer		
	Ensemble	Forest	Naïve Bayes	Logistic	
AUROC	0.575	0.645	0.607	0.610	
Lower Bound	0.530	0.631	0.593	0.596	
Upper Bound	0.548	0.658	0.625	0.623	

TREENET ROC Curve – IME AUROC = 0.701

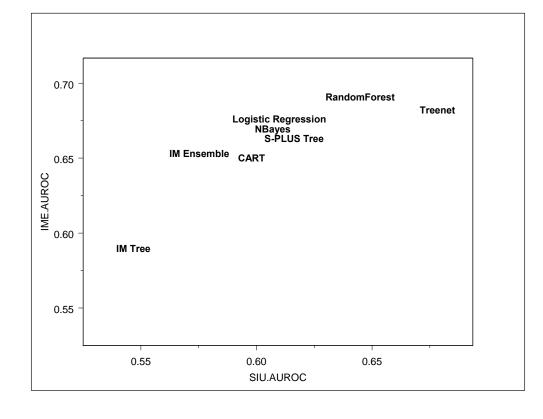


Logistic ROC Curve - IME AUROC = 0.643

Logistic ROC Curve – SIU AUROC = 0.612


Ranking of Methods/Software – 1st Two Surrogates

Ranking of Methods By AUROC - Decision					
Method	SIU AUROC	SIU Rank	IME Rank	IME AUROC	
Random Forest	0.645	1	1	0.703	
TREENET	0.643	2	2	0.701	
S-PLUS Tree	0.616	3	3	0.688	
Iminer Naïve Bayes	0.615	4	5	0.676	
Logistic	0.612	5	4	0.677	
CART Tree	0.607	6	6	0.669	
Iminer Tree	0.565	7	8	0.629	
Iminer Ensemble	0.539	8	7	0.649	


Ranking of Methods/Software – Last Two Surrogates

Ranking of Methods By AUROC - Favorable					
Method	SIU AUROC	SIU Rank	IME Rank	IME	
				AUROC	
TREENET	0.678	1	2	0.683	
Random Forest	0.645	2	1	0.692	
S-PLUS Tree	0.616	3	5	0.664	
Logistic	0.610	4	3	0.677	
Iminer Naïve Bayes	0.607	5	4	0.670	
CART Tree	0.598	6	7	0.651	
Iminer Ensemble	0.575	7	6	0.654	
Iminer Tree	0.547	8	8	0.591	

Plot of AUROC for SIU vs. IME Decision

Plot of AUROC for SIU vs. IME Favorable

