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What is Timeline Simulation?
• Current simulations

– Collective Risk model
– Choose a time interval, and ask “how many 

events in the interval?”
• Timeline simulation

– Associate a time with all events – everything 
is on a time line.

– Ask “how long to the next event?”



Motivation: we want
• Transparency – complete audit trail for 

each realization
• Causality during each realization
• Reality – be able to  model closer to how 

things actually happen
• Intuitive modeling.
• Reproducibility of current procedures 



Transparency – Event Cascade
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Event Cascade
• Every event occurs at a time.
• Every event is connected with causal links 

back to its ultimate source.
• We can pick up any event and see the 

chain that led there.
• Events can influence the generation of 

other events.



Events
• Events are basically anything of interest 

that you want to model.
• E.g. premiums, losses, ceded losses, loss 

adjustment expense, other expenses.
• Could include indexes, unemployment 

rates, economic activity, ...



Causality
• Events can influence the generation of 

other events.
– Inflation hits claim payments and index 

clauses 
– Successful suits engender more of the same
– Management rules affect writings or rates
– Economy can influence frequency and 

severity.  Mortgage derivative insurance, 
anyone?



Reality
• Events do happen at points in time.  Later 

events can be causally influenced by 
earlier events. 

• Discounting and index clauses can be 
done exactly.

• Frequency and severity need not be 
independent.

• Seasonality can be easily done. 



Intuitive
• Event generation is separated from 

reporting: there is one timeline and AY, 
AQ, RY, RQ etc are just different views.

• We can do new models simply.  E.g. “big 
claims pay out later” is easy if you make 
the distribution of the time lag to payment 
depend on the realized severity.  



Reproducibility
• Collective risk modeling generally amounts 

to assuming all losses happen in the 
middle of the period.  This is a special 
case.

• Arbitrary frequency distributions can be 
used. Poisson, negative binomial, and 
more generally any mixed Poisson 
distributions are natural and easy.



Some Problems Avoided:
• Sparse matrices: with weekly periods most 

entries are zero, but still need 
housekeeping.

• Event generation dependent on reporting.
• Inappropriate allocation of deductibles. 



Some examples where a timeline 
approach is useful:

• Success of one claim engenders others –
think toxic mold.

• A change in exposure affects premiums, 
frequency of individual losses, and 
severity of aggregated losses.

• Indexation clauses
• Probability of two large hurricanes within 

two weeks of each other.



Theory
• Simple in principle: after each event ask 

for the time to the next, rather than how 
many events there are in a given time.

• The essential results are 
– Simulations are easy. 
– We can reproduce how we currently do 

things.
– We can get new modes of thinking and 

models.



-NOT

“At some point his theory becomes so abstract it can only be 
conveyed using interpretative dance”



Theory
• Assumptions:

– In an arbitrarily short time interval Δt there is 
at most one event.  Clearly true for insurance 
work.  

– The probability of an event in Δt is 
proportional to Δt.  The proportionality is the 
instantaneous frequency.



Instantaneous Frequency λ
• Intuitively, the propensity for an event to 

occur.
• It can depend on time, number of events, 

or anything else in the problem, such as 
previous events.

• As a formula, the probability of an event in 
Δt is

( )Pr = λ , ,...t n tΔ



Fundamental relation
• To have n events at t+Δt you either 

already had n at t and did not get another 
in Δt, or you had n-1 and did get another.

• So: the probability of having exactly n 
events at time t+Δt is the sum of the 
probability of n events at time t times the 
probability of no events between t and t+Δt
plus the probability of n-1 events at time t
times the probability of one event between 
t and t+Δt. 



Fundamental relation (2)
• Easier to see as a formula on probabilities: 

( ) ( ) ( ) ( ) ( )11 λ , λ , 1n n nP t t P t t n t P t t n t−+Δ = − Δ + − Δ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

Had n

Didn’t get one

Had n-1

Did get one



Differential Equations
• Go to limit as              :

• Boundary condition:  No claims at t=0.

( ) ( ) ( ) ( ) ( )1λ , λ , 1n n n
d P t t n P t t n P t
dt −= − + −

0 0(0) 1, (0) 0nP P >= =

0tΔ →



Probability of no events
• This is ultimately used in simulation.
• In general,

• The solution with the boundary condition is

( ) ( ) ( )0 0λ ,0d P t t P t
d t

= −

( ) ( )
0

0 exp λ τ, 0 τ
t

P t d
⎧ ⎫⎪ ⎪= −⎨ ⎬
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∫



Waiting Time Distribution
• The distribution of waiting time T from time 

t=0 is

• The substitution of a random uniform 
deviate for F(T) will generate a random 
time T to the next event.  We need to 
solve for it, of course.

( ) ( ) ( )
0

01 1 exp λ τ,0 τ
T
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Poisson Process
• Defined by λ being constant. 
• Can solve the differential equations and 

get

• This is recognizably the form usually used 
for a Poisson, although for arbitrary time.
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More Poisson
• Exponential waiting time distribution from t

• Random wait time given as

• Timeline simulation is basically piecewise 
Poisson, with the exception of trend and 
seasonality which use their explicit time 
dependence.

( ) ( )λ
, 1 e

T t
F T t

− −
= −

( )1 ln
λ

T t uniform random− = −



Mean Count and Frequency
• The rate of change of the mean count is the 

frequency averaged over events:

• If the frequency does not depend on count, 
the frequency is the derivative.

• For a Poisson, the mean increases linearly.

( ) ( ) ( )
0
λ ,

n
n
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An Example of Count Dependence 

• When λ(t,n) = a + bn with b>0, the 
resulting distribution is negative binomial 
at any fixed time.

• Its mean increases exponentially in time

( )λ 1
b

btmean e= −



Frequency mixing of Poisson   
distributions is        .

• necessary because of parameter 
uncertainty.

• also useful because a negative binomial 
can be represented as a gamma-
distributed mix of Poissons.

• done at the start of a realization, and 
intuitively corresponds to choosing which 
world will be represented.



Frequency Mixed Poisson 
• Formula is 

• Mean number of events is

• Variance to mean ratio is
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Negative Binomial as Gamma mix

• The mixing mean is αθ
and the variance to mean is θ.

• The count distribution is 

• The mean is αθt and the variance to mean 
is 1+θt.
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Uniform mix
• for                 and zero 

otherwise.
• The count distribution is

• where
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Given the probabilities
• We can in principle always find a mixing 

function, but it may not be a distribution.
• E.g. if there is exactly one event, then the 

probability for no events is zero.  That is,

• This is not possible unless                
somewhere, and probability densities are 
inherently positive.

• We can still generate timeline events, though.
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Simulation
• At the start, and after each event, get the 

time to the next event.
• Events may be randomly realized, created 

in response to earlier events, or 
scheduled.

• Respectively, examples could be losses, 
reinsurance, and premium payments – or 
a lot of other possibilities.



How to do it?
• One way is to let time increase by intervals 

of Δt and in each interval see if there is an 
event using the current frequencies.

• This is a lot of realizations, and not 
necessary.

• We can use the waiting time distributions 
to find the next event.  This is exactly 
equivalent to looking in each Δt, since the 
probability is still λΔt.



So, A Better Way
• Take the problem as Poisson at any point 

in time, frequencies fixed until the next 
event.

• The time to the next event is

• With many processes, we can evaluate 
the time for each of them and choose the 
earliest.

( )1 ln
λ

T t uniform random− = −



A Better Way (2)
• A sum of Poissons is Poisson.  Having 

processes with frequencies λ1, λ2, …
create the sum λ = λ1+ λ2+...    

• Get the waiting time for this, and then 
choose which process pro-rata on the 
frequencies.

• This gives the same result, since the 
probability for an event in Δt for process n 
is (λΔt)(λn/λ) = λnΔt



A Better Way (3)
• Having the next random event, compare to 

the next scheduled and use the earlier.
• After the event, poll the frequencies and 

get the next event.
• This allows arbitrary interdependence 

between events.
• The entire realization history is available to 

affect process parameters – and anything 
else that is modeled.



An Improved Better Way
• Let each generator keep track of its own 

next event time, rather than just frequency.
• Recalculate the time when an affecting 

event happens.
• With this, solely time-dependent 

frequencies can be done exactly without 
having to approximate them as steps.

• E.g. trend only requires solving a 
quadratic.



Spreadsheet examples
• Pure Poisson-Pareto with an XS cover.
• Pure negative binomial as a gamma mix, 

with a variable number of payments.
• Projection and parameter uncertainty for a 

negative binomial, and a variable number, 
timing, and amount of payments.

• Exposure-driven premium, large, and 
aggregated losses.

• More in the spreadsheet.



And finally
Now that you have seen the model T,

take a look at the Ferrari.


