
Hierarchical Growth Curve Models for 
Loss Reserving

CAS Annual Meeting
Seattle
November, 2008

Jim Guszcza, FCAS, MAAA
Deloitte Consulting



1Copyright © 2008 Deloitte Development LLC.  All rights reserved.

Topics

Background

Hierarchical Models and Credibility Theory

Motivating Example

Loss Reserving:  Growth Curve Models

Hierarchical Modeling Theory



Background

Models vs Methods
Need for Variability Estimates



3Copyright © 2008 Deloitte Development LLC.  All rights reserved.

Loss Reserving and its Discontents

• Much loss reserving practice is “pre-theoretical” in nature.
• Techniques like chain ladder, BF, and Cape Cod aren’t performed in a statistical 

modeling framework.

• Traditional methods aren’t necessarily optimal from a statistical POV.
• Potential of over-fitting small datasets.
• Difficult to assess goodness-of-fit, compare nested models, etc.
• Often no concept of out-of-sample validation of diagnostic plots.

• Related point:  traditional methods produce point estimates only.
 Reserve variability estimates in practice are often ad hoc.

• Stochastic reserving:  build statistical models of loss development.
• Attempt to place loss reserving practice on a sound scientific footing.
• Field is developing rapidly.
• Today:  explore non-linear hierarchical models (aka “nonlinear mixed effects 

models”) as natural, parsimonious models of the loss development process.
• Motivated by Dave Clark paper [2003].
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What is Hierarchical Modeling?

• Hierarchical modeling is used when one’s data is grouped in 
some important way.

• Claim experience by state or territory
• Workers Comp claim experience by class code
• Income by profession
• Claim severity by injury type
• Churn rate by agency
• Multiple years of loss experience by policyholder.
• …

• Often grouped data is modeled either by:
• Pooling the data and introducing dummy variables to reflect the groups
• Building separate models by group

• Hierarchical modeling offers a “third way”.
• Parameters reflecting group membership enter one’s model through 

appropriately specified probability sub-models.
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What’s in a Name?

• Hierarchical models go by many different names
• Mixed effects models
• Random effects models
• Multilevel models
• Longitudinal models
• Panel data models

• We prefer the “hierarchical model” terminology because it 
evokes the way models-within-models are used to reflect 
levels-within-levels of ones data.

• An important special case of hierarchical models involves 
multiple observations through time of each unit.

• Here group membership is the repeated observations belonging to each 
individual.

• Time is the covariate.
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Common Hierarchical Models

• Notation:  
• Data points (Xi, Yi)i=1…N

• j[i]:  data point i belongs to group j.

• Classical Linear Model Yi =  + Xi + i
• Equivalently:  Yi ~ N( + Xi, 2)
• Same  and  for every data point

• Random Intercept Model Yi = j[i] + Xi + i
• Where j ~ N(, 2

)   &   i ~ N(0, 2)
• Same  for every data point; but  varies by group

• Random Intercept and Slope Model Yi = j[i] + j[i]Xi + i
• Where (j, j) ~ N(, )  &  i ~ N(0, 2)
• Both  and  vary by group
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Parameters and Hyperparameters

• We can rewrite the random intercept model this way:

• This model contains 9 parameters: {1, 2, …, 8, }.
• And it contains 4  hyperparameters: {, 2, , }.

• Here is how the hyperparameters relate to the parameters:

• Does this formula look familiar?
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Motivating Example:  Longitudinal Data Set

• Suppose we wish to model a company’s policies in force, by region, for 
the years 2005-08.

• 8 * 4 = 32 data points.

• One way to visualize the data:
– Plot all of the data points on the 

same graph, use different 
colors/symbols to represent 
region.

• Alternate way:
– Use a trellis-style display, with 

one plot per region
– More immediate representation of 

the data’s hierarchical structure.
– (see next slide)

• Note bene:  this is just a 
simple stylized example 
using made-up data!
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Trellis-Style Data Display

• We wish to build a model that captures the change in PIF over time.
• We must reflect the fact that PIF varies by region.
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Option 1:  Simple Regression

• The easiest thing to do is to pool the data across 
groups  -- i.e. simply ignore region

• Fit a simple linear model
• Alas, this model is not appropriate for all regions
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Option 2:  Separate Models by Region

• At the other extreme, we can fit a separate 
simple linear model for each region.

• Each model is fit with 4 data points.
• Introduces danger of over-fitting the data.
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Option 3:  Random Intercept Hierarchical Model

• Compromise:  Reflect the region group structure using a hierarchical model.
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Compromise Between Complete Pooling & No Pooling

  tPIF
No Pooling
• Estimating one model for each 

group

Compromise

Hierarchical Model
• Estimates parameters 

using a compromise 
between complete 
pooling and no pooling.

  8,..,2,1 k
kkk tPIF 
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Option 1b:  Adding Dummy Variables

• Question:  of course it’d be crazy to fit a separate SLR for each region.
• But what about adding 8 region dummy variables into the SLR?

• If we do this, we need to estimate 9 parameters instead of 2.

• In contrast, the random intercept model contains 4 hyperparameters:  
, , , 

• Now suppose our example contained 800 regions.  If we use dummy 
variables, our SLR potentially requires that we estimate 801 parameters.

• But the random intercept model will contain the same 4 
hyperparameters.

• Hierarchical models offer a way to handle “massively categorical variables”.

  tRRRPIF 882211 ...
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Varying Slopes

• The random intercept model is a compromise between a “pooled”
SLR and a separate SLR by region.

• But there is nothing sacred about the intercept term:  we can also 
allow the slopes to vary by region.

• In the dummy variable option (1b) this would require us to interact 
region with the time t variable… i.e. it would return us to option 2.

• Great danger of overparameterization.

• Adding random slopes adds considerable flexibility at the cost of only 
two additional hyperparameters.

• Random slope only:  , , , 

• Random slope & intercept: , , , , , 
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Option 4:  Random Slope & Intercept Hierarchical Model

• We can similarly include a sub-model for the slope .
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Does Adding Random Slopes Improve the Model?

• How do we determine whether adding the random slope term improves 
the model?

1. Graphical analysis and judgment:  
• the random slopes arguably yield an improved fit for Region 5.
• but it looks like the random slope model might be overfitting Region 3.
• Other regions a wash

2. Out of sample lift analysis.

3. Akaike information Criterion [AIC]:  -2*LL + 2*d.f.
• Random intercept AIC: 380.40
• Random intercept & slope AIC: 380.64
• Slight deterioration  better to select the random intercept model.

• Random slopes don’t help in this example, but it is a very powerful form 
of variable interaction to consider in one’s modeling projects.



19Copyright © 2008 Deloitte Development LLC.  All rights reserved.

Parameter Comparison

• It is important to distinguish between each model’s parameters and 
hyperparameters.

• SLR:  2 parameters and 2 hyperparameters
• Random intercept:  11 parameters and 4 hyperparameters
• Random intercept & slope:  20 parameters and 6 hyperparameters

• How do the hyperparameters relate to the parameters?

SLR random intercept random intercept & slope
region intercept slope intercept slope intercept slope
1 2068.0 100.1 1911.3 100.1 1999.3 70.3
2 2068.0 100.1 2087.8 100.1 2070.2 111.2
3 2068.0 100.1 2236.1 100.1 2137.0 137.4
4 2068.0 100.1 2267.3 100.1 2159.6 133.2
5 2068.0 100.1 1980.3 100.1 2033.1 79.3
6 2068.0 100.1 1932.3 100.1 2008.9 73.8
7 2068.0 100.1 2066.8 100.1 2066.3 101.2
8 2068.0 100.1 2061.8 100.1 2069.5 94.1

, , ,  , , , , , , 



Connection with Credibility Theory
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Hierarchical Models and Credibility Theory

• Let’s revisit the random intercept model.

• This is how we calculate the random intercepts {1, 2, …, 8}:

• Therefore:  each random intercept is a credibility-weighted average
between:

• The intercept for the pooled model (option 1)
• The intercept for the region-specific model (option 2)
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Hierarchical Models and Credibility Theory

• This makes precise the sense in which the random intercept model is a 
compromise between the pooled-data model (option 1) and the separate 
models for each region (option 2).

• As 0, the random intercept model  option 1
• As  , the random intercept model  option 2

• Aside:  what happens to the above formula if we remove the covariate t
from our random intercept model?
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Bühlmann’s Credibility and Random Intercepts

• If we remove the time covariate (t) from the random intercepts model, 
we are left with a very familiar formula: 

• Therefore:  Bühlmann’s credibility model is a specific instance of 
hierarchical models.

• The theory of hierarchical models gives one a practical way to integrate 
credibility theory into one’s GLM modeling activities.
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Summing Up

• Hierarchical models are applicable when one’s data comes grouped in 
one or more important ways.

• A group with a large number of levels might be regarded as a “massively 
categorical value”…

• Building separate models by level or including one dummy variable per level is often 
impractical or unwise from a credibility point of view.

• Hierarchical models offer a compromise between complete pooling and 
separate models per level.

• This compromise captures the essential idea of credibility theory.

• Therefore hierarchical model enable a practical unification of two 
pillars of actuarial modeling:

• Generalized Linear Models
• Credibility theory
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Other thoughts

• The “credibility weighting” reflected in the calculation of the random 
effects represents a “shrinkage” of group-level parameters (j, j) to 
their means (, ).

• The lower the “between variance” (
2) the greater amount of 

“shrinkage” or “pooling” there is.  

• There is more shrinkage for groups with fewer observations (n).

• Panel data analysis is a type of hierarchical modeling  this is a natural 
framework for analyzing longitudinal datasets.

• Multiple observations of the same policyholder
• Loss reserving:  loss development is multiple observations of the same AY 

claims

• So… on to loss reserving.



Hierarchical Growth Curve                
Loss Reserving Model
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Hierarchical Modeling for Loss Reserving

• Here is a garden-variety loss triangle (Dave Clark CAS Forum 2003):

• We can regard this as a longitudinal dataset.

• Grouping dimension:  Accident Year (AY)

• We can build a parsimonious non-linear model that uses random 
effects to allow the model parameters to vary by accident year.

Cumulative Losses in 1000's
AY 12 24 36 48 60 72 84 96 108 120 reported est ult reserve

1991 358 1,125 1,735 2,183 2,746 3,320 3,466 3,606 3,834 3,901 3,901 3,901 0
1992 352 1,236 2,170 3,353 3,799 4,120 4,648 4,914 5,339 5,339 5,434 95
1993 291 1,292 2,219 3,235 3,986 4,133 4,629 4,909 4,909 5,379 470
1994 311 1,419 2,195 3,757 4,030 4,382 4,588 4,588 5,298 710
1995 443 1,136 2,128 2,898 3,403 3,873 3,873 4,858 985
1996 396 1,333 2,181 2,986 3,692 3,692 5,111 1,419
1997 441 1,288 2,420 3,483 3,483 5,672 2,189
1998 359 1,421 2,864 2,864 6,787 3,922
1999 377 1,363 1,363 5,644 4,281
2000 344 344 4,971 4,627

chain link 3.491 1.747 1.455 1.176 1.104 1.086 1.054 1.077 1.018 1.000 34,358 53,055 18,697
chain ldf 14.451 4.140 2.369 1.628 1.384 1.254 1.155 1.096 1.018 1.000
growth curve 6.9% 24.2% 42.2% 61.4% 72.2% 79.7% 86.6% 91.3% 98.3% 100.0%
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Growth Curves

• Let’s build a non-linear
model of the loss 
triangle.

• GLM shows up a lot in the 
stochastic loss reserving 
literature.

• But… are GLMs natural 
models for loss triangles?

• Uses growth curve to 
model the loss 
development process

• 2-parameter curves
•  = scale
•  = shape

• Basic idea: we fit these 
curves to the LDFs and 
add random effects to 
and/or  to allow the 
curves to vary by year.
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Baseline Model:  Heuristics

• Basic intuition is familiar:  (CLAY,t) * (LDF) = Ult loss

 CLAY,t = (Ult lossAY)*(1 / LDFt)

 CLAY,t = (Ult lossAY)*G,(t) + error

• The “growth curve” part comes in by using G(t) instead of LDFs.
• Think of LDF’s as a rough piecewise linear approximation to a G(t)

• The “hierarchical” part comes in because we can let ULTAY, , and/or 
vary by AY (using sub-models).
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Including Exposures in the Model

• Our model so far:

• What if we wish to include an exposure measure in the model?
• It’s easily done:

• premAY is given; LRAY are hyperparameters; LR and LR are 
parameters.

• LR and LR replace ULT and ULT.
• LR is essentially a “Cape Cod” style LR estimate for all years combined.
• {LR1991, LR1992,…, LR2000, } are “credibility weighted” LR estimates for each of the 

individual accident years.
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Other “Random Effects”

• Our model so far:

• What if we want to include other random effects in the model?
• It’s easily done:

• Here we add a “random warp” effect to let  vary by AY.
• Can also add “random scale” () effect if we want.

• We can compare AIC and diagnostic plots to judge whether this 
improves the model.
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Baseline Model Performance

Cumulative losses @ dev = 
(Ult losses) * (modeled growth)

We must estimate the parameters:
{ULT;  ; ; ULT ; }
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• Random effects 
added to ultimate 
loss (ULT) 
parameter.

– Analogous to 
random 
intercepts

• Random shape 
(), scale () 
effects were 
tested, found not 
to be significant.

Weibull Growth Curve Loss Development Model
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Baseline Model Performance

The random 
effects allow a 
“custom fit”
growth curve for 
each AY while 
maintaining 
parsimony.

The model 
contains only 5 
hyperparameters, 
but fits the loss 
triangle very well
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Weibull Growth Curve Loss Development Model
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Residual Diagnostics

• An advantage of stochastic reserving in general – and this method in 
particular – is that it enables us to use residual diagnostic analysis.
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Model Results

• The overall o/s reserve estimate is close to that of the chain ladder $18.7M.

Parameters and Estimated Reserves - Baseline Model 
AY dev omega theta growth reported eval120 eval240 ULT reserves

1991 114 1.306 46.638 96.0% 3,901 3,943 4,073 4,074 172
1992 102 1.306 46.638 93.8% 5,339 5,239 5,412 5,413 74
1993 90 1.306 46.638 90.6% 4,909 5,207 5,379 5,380 470
1994 78 1.306 46.638 85.9% 4,588 5,423 5,602 5,603 1,015
1995 66 1.306 46.638 79.3% 3,873 4,777 4,935 4,936 1,062
1996 54 1.306 46.638 70.2% 3,692 5,052 5,219 5,220 1,528
1997 42 1.306 46.638 58.2% 3,483 5,512 5,694 5,695 2,212
1998 30 1.306 46.638 43.0% 2,864 5,850 6,043 6,044 3,180
1999 18 1.306 46.638 25.0% 1,363 5,255 5,429 5,430 4,067
2000 6 1.306 46.638 6.6% 344 5,101 5,270 5,271 4,927
total 53,066 18,708

CHAIN LADDER METHOD
AY 12 24 36 48 60 72 84 96 108 120 reported est ult reserve

1991 358 1,125 1,735 2,183 2,746 3,320 3,466 3,606 3,834 3,901 3,901 3,901 0
1992 352 1,236 2,170 3,353 3,799 4,120 4,648 4,914 5,339 5,339 5,434 95
1993 291 1,292 2,219 3,235 3,986 4,133 4,629 4,909 4,909 5,379 470
1994 311 1,419 2,195 3,757 4,030 4,382 4,588 4,588 5,298 710
1995 443 1,136 2,128 2,898 3,403 3,873 3,873 4,858 985
1996 396 1,333 2,181 2,986 3,692 3,692 5,111 1,419
1997 441 1,288 2,420 3,483 3,483 5,672 2,189
1998 359 1,421 2,864 2,864 6,787 3,922
1999 377 1,363 1,363 5,644 4,281
2000 344 344 4,971 4,627

chain link 3.491 1.747 1.455 1.176 1.104 1.086 1.054 1.077 1.018 1.000 34,358 53,055 18,697
chain ldf 14.451 4.140 2.369 1.628 1.384 1.254 1.155 1.096 1.018 1.000
growth curve 6.9% 24.2% 42.2% 61.4% 72.2% 79.7% 86.6% 91.3% 98.3% 100.0%

These are the 12 hierarchical model parameters.
ULT = 5306.6

ULT1998 is lower in 
hierarchical model 
than chain ladder.

Cum losses @36 
disproportionately 
high for 1998.

This data point has 
more leverage in the 
chain ladder method.
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A Word About Software

• I used the open-source R statistical programming environment to fit 
these models.

• High level, statistically advanced, widely used amongst academics and practitioners in 
most fields.

• Becoming common in the actuarial community.

• Another CAS annual meeting presentation:
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