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Loss Reserving and its Discontents

|II

Much loss reserving practice is “pre-theoretical” in nature.

e Techniques like chain ladder, BF, and Cape Cod aren’t performed in a statistical
modeling framework.

Traditional methods aren’t necessarily optimal from a statistical POV.
e Potential of over-fitting small datasets.
e Difficult to assess goodness-of-fit, compare nested models, etc.
e Often no concept of out-of-sample validation of diagnostic plots.

Related point: traditional methods produce point estimates only.
= Reserve variability estimates in practice are often ad hoc.

Stochastic reserving: build statistical models of loss development.
o Attempt to place loss reserving practice on a sound scientific footing.
e Field is developing rapidly.

e Today: explore non-linear hierarchical models (aka “nonlinear mixed effects
models”) as natural, parsimonious models of the loss development process.

e Motivated by Dave Clark paper [2003].
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What is Hierarchical Modeling?

e Hierarchical modeling is used when one’s data is grouped in
some important way.
e Claim experience by state or territory
e Workers Comp claim experience by class code
e Income by profession
e Claim severity by injury type
e Churn rate by agency
e Multiple years of loss experience by policyholder.

e Often grouped data is modeled either by:

e Pooling the data and introducing dummy variables to reflect the groups
e Building separate models by group

e Hierarchical modeling offers a “third way”.

e Parameters reflecting group membership enter one’s model through
appropriately specified probability sub-models.
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What's in a Name?

e Hierarchical models go by many different names
e Mixed effects models

Random effects models

Multilevel models

Longitudinal models

Panel data models

e We prefer the “hierarchical model” terminology because it
evokes the way models-within-models are used to reflect
levels-within-levels of ones data.

e An important special case of hierarchical models involves
multiple observations through time of each unit.

e Here group membership is the repeated observations belonging to each
individual.

e Time is the covariate.
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Common Hierarchical Models

Notation:
e Data points (X, Y)),_1
e j[i]: data point / belongs to group j.

Classical Linear Model
e Equivalently: Y, ~ N(a + BX,, c2)

e Same a and B for every data point

e Random Intercept Model
e Where a; ~ N(y,, 6%,) & ¢ ~ N(O, c?)

e Same p for every data point; but a varies by group

Y.

]

a+ BX; + ¢

o F BX; + ¢;

e Random Intercept and Slope Model Y; = ojrip + BjnXi + &
e Where (o, B;) ~ N(M, X) & & ~ N(0, 52)
e Both a and B vary by group /
o, U, ol ©
YZ.~N(aj[l.]+,Bj[i]-Xi,62) where "I~ N ) , 2= ° “Zﬂ
B, Hp o Op
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Parameters and Hyperparameters

We can rewrite the random intercept model this way:

Y.~ N(a;,+BX,,0°) a,~N(u,.o,)

Jli]

This model contains 9 parameters: {a,, a5, ..., ag, B}.
And it contains 4 hyperparameters: {u, B>, o, 6.}

Here is how the hyperparameters relate to the parameters:

n.

O,Zj:Zj'()_/j—ﬂ)?j)+(1—Zj)-ﬁa where ij /

2
n; +G/2
Ga

Does this formula look familiar?
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Motivating Example: Longitudinal Data Set

the years 2005-08.
8 * 4 = 32 data points.

Policies in Force by Year and Region

Suppose we wish to model a company’s policies in force, by region, for

One way to visualize the data:

— Plot all of the data points on the
same graph, use different
colors/symbols to represent
region.

[ ]
pif

Alternate way:

- Use a trellis-style display, with
one plot per region

— More immediate representation of
the data’s hierarchical structure.

- (see next slide)
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Note bene: this is just a

w

simple stylized example

using made-up data!
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pif

pif

Trellis-Style Data Display

e We wish to build a model that captures the change in PIF over time.
e We must reflect the fact that PIF varies by region.
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Option 1: Simple Regression

e The easiest thing to do is to pool the data across
groups -- i.e. simply ignore region

e Fit a simple linear model

e Alas, this model is not appropriate for all
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Option 2: Separate Models by Region

e At the other extreme, we can fit a separate

simple linear model for each region.
e Each model is fit with 4 data points.
e Introduces danger of over-fitting the data.
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Option 3: Random Intercept Hierarchical Model

e Compromise: Reflect the region group structure using a hierarchical model.

PIF ~ N(a,; + Bt,0%)  a,~N(u,,c?)
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Compromise Between Complete Pooling & No Pooling

PIF=a+ft+e \PIF =a" + priset),

Complete Pooling No Pooling

e Ignore group structure e Estimating one model for each
altogether group

Compromise

Hierarchical Model

e Estimates parameters
using a compromise
between complete
pooling and no pooling.

PIF ~ N(a,,, + ft,6%)  a,~N(u,,c7)

Tt LLC. AT TTgIS Teoerved.
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Option 1b: Adding Dummy Variables

e Question: of course it'd be crazy to fit a separate SLR for each region.
e But what about adding 8 region dummy variables into the SLR?

o If we do this, we need to estimate 9 parameters instead of 2.

e In contrast, the random intercept model contains 4 hyperparameters:
Hal Bl G, Ga

e Now suppose our example contained 800 regions. If we use dummy
variables, our SLR potentially requires that we estimate 801 parameters.

e But the random intercept model will contain the same 4
hyperparameters.
e Hierarchical models offer a way to handle "massively categorical variables”.

Copyright © 2008 Deloitte Development LLC. All rights reserved. 15



Varying Slopes

e The random intercept model is a compromise between a “pooled”
SLR and a separate SLR by region.

PIF ~ N(a,+pt,0”) o, ~N(u,,0.)

e But there is nothing sacred about the intercept term: we can also
allow the slopes to vary by region.

a. ., c. o
j[i]+ﬂj[i]'Xn02) where ( ])NN[{M }Zj : Z:{ - azﬁ}
B, Hp Oup) Op

e In the dummy variable option (1b) this would require us to interact
region with the time t variable... i.e. it would return us to option 2.
e Great danger of overparameterization.

e Adding random slopes adds considerable flexibility at the cost of only
two additional hyperparameters.
e Random slope only: u,, B, o, o,
e Random slope & intercept: Hor Mgs Oy Gy Opy Oy

Copyright © 2008 Deloitte Development LLC. All rights reserved. 16



Option 4: Random Slope & Intercept Hierarchical Model

e We can similarly include a sub-model for the slope B.

PIF, ~ N(aj[l.] + 0 -ti,az) where
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Does Adding Random Slopes Improve the Model?

e How do we determine whether adding the random slope term improves
the model?

1. Graphical analysis and judgment:

e the random slopes arguably yield an improved fit for Region 5.
e but it looks like the random slope model might be overfitting Region 3.
e Other regions a wash

2. Out of sample lift analysis.

3. Akaike information Criterion [AIC]: -2*LL + 2*d.f.

e Random intercept AIC: 380.40
e Random intercept & slope AIC: 380.64
e Slight deterioration =» better to select the random intercept model.

> anovaloptioni, optiond)

Model 4f ATC EIC logLik Test L.Ratio p-value
option3d 1 4 380.4011 356.0058 -186.2005
optiond 2 B 380.6387 3589.0458 -184.3194 1 w= 2 3.762325 0.1524

e Random slopes don't help in this example, but it is a very powerful form
of variable interaction to consider in one’s modeling projects.

Copyright © 2008 Deloitte Development LLC. All rights reserved. 18



Parameter Comparison

e It is important to distinguish between each model’s parameters and
hyperparameters.

o, B Hor B, o, G, Hor Mgr Or Oyr Ogr Ogp
] ] random intercept Bl random intercept & slope
region intercept intercept slope intercept slope
1 2068.0 100.1 1911.3 100.1 1999.3 70.3
2 2068.0 100.1 2087.8 100.1 2070.2 111.2
3 2068.0 100.1 2236 .1 100.1 2137.0 137.4
4 2068.0 100.1 2267.3 100.1 2159.6 133.2
5 2068.0 100.1 1980.3 100.1 2033 1 79.3
6 2068.0 100.1 1932.3 100.1 2008.9 73.8
7 2068.0 100.1 2066.8 100.1 2066.3 101.2
8 2068.0 100.1 2061.8 100.1 2069.5 94 1
e SLR: 2 parameters and 2 hyperparameters
e Random intercept: 11 parameters and 4 hyperparameters

e Random intercept & slope: 20 parameters and 6 hyperparameters

e How do the hyperparameters relate to the parameters?

Copyright © 2008 Deloitte Development LLC. All rights reserved. 19
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Hierarchical Models and Credibility Theory

e Let’s revisit the random intercept model.

PIF ~ N(a,,+ pt,0”) o, ~N(u,,0.)

e This is how we calculate the random intercepts {a,, a5, ..., ag}:

n _ _ ) n.
a,=Z,-(y,-pt)+(10-2,)-n, where Z,= /

2
n,; "'6/2
G(X

e Therefore: each random intercept is a credibility-weighted average
between:

e The intercept for the pooled model (option 1)
e The intercept for the region-specific model (option 2)

Copyright © 2008 Deloitte Development LLC. All rights reserved. 21



Hierarchical Models and Credibility Theory

This makes precise the sense in which the random intercept model is a
compromise between the pooled-data model (option 1) and the separate
models for each region (option 2).

n _ _ ) n.
a,=2,-(y,—Pt))+(1-2,)- i, where Z = /

2
n; +G/2
Ga

As ¢,~0, the random intercept model - option 1
As ¢, > , the random intercept model > option 2

Aside: what happens to the above formula if we remove the covariate t
from our random intercept model?

Copyright © 2008 Deloitte Development LLC. All rights reserved. 22



Buhlmann’s Credibility and Random Intercepts

e If we remove the time covariate (t) from the random intercepts model,

we are left with a very familiar formula:

N

J

a .

Zj')_/j+(1_zj)':aa

where Z ;=

n;

2
nj+<7/
o

2
a

e Therefore: Biuhlmann’s credibility model is a specific instance of

hierarchical models.

e The theory of hierarchical models gives one a practical way to integrate

credibility theory into one’s GLM modeling activities.

Copyright © 2008 Deloitte Development LLC. All rights reserved.




Summing Up

e Hierarchical models are applicable when one’s data comes grouped in
one or more important ways.

e A group with a large number of levels might be regarded as a "massively
categorical value”...

e Building separate models by level or including one dummy variable per level is often
impractical or unwise from a credibility point of view.

Hierarchical models offer a compromise between complete pooling and
separate models per level.

This compromise captures the essential idea of credibility theory.

Therefore hierarchical model enable a practical unification of two
pillars of actuarial modeling:

e Generalized Linear Models
e Credibility theory

Copyright © 2008 Deloitte Development LLC. All rights reserved. 24



Other thoughts

e The “credibility weighting” reflected in the calculation of the random
effects represents a “shrinkage” of group-level parameters (o;, B;) to
their means (u,, u;).

e The lower the “between variance” (¢,2) the greater amount of
“shrinkage” or “pooling” there is.

e There is more shrinkage for groups with fewer observations (n).

e Panel data analysis is a type of hierarchical modeling = this is a natural
framework for analyzing longitudinal datasets.
e Multiple observations of the same policyholder

e Loss reserving: loss development is multiple observations of the same AY
claims

¢ S0... on to loss reserving.

Copyright © 2008 Deloitte Development LLC. All rights reserved. 25
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Hierarchical Modeling for Loss Reserving

e Here is a garden-variety loss triangle (Dave Clark CAS Forum 2003):

Cumulative Losses in 1000's

AY 12 24 36 48 60 72 84 96 108 120 reported est ult reserve
1991 358 1,125 1,735 2,183 2,746 3,320 3,466 3,606 3,834 3,901 3,901 3,901 0
1992 352 1,236 2,170 3,353 3,799 4,120 4,648 4,914 5339 5,339 5,434 95
1993 291 1,292 2219 3,235 3,986 4,133 4,629 4,909 4,909 5,379 470
1994 311 1,419 2,195 3,757 4,030 4,382 4,588 4,588 5,298 710
1995 443 1,136 2,128 2,898 3,403 3,873 3,873 4,858 985
1996 396 1,333 2,181 2,986 3,692 3,692 5,111 1,419
1997 441 1,288 2,420 3,483 3,483 5,672 2,189
1998 359 1,421 2,864 2,864 6,787 3,922
1999 377 1,363 1,363 5,644 4,281
2000 344 344 4,971 4,627
chain link 3.491 1.747 1.455 1.176 1.104 1.086 1.054 1.077 1.018 1.000 34,358 53,055
chain Idf 14.451 4.140 2.369 1.628 1.384 1.254 1.155 1.096 1.018 1.000

growth curve 6.9% 24.2% 422% 61.4% 72.2% 79.7% 86.6% 91.3% 98.3% 100.0%

e We can regard this as a longitudinal dataset.
e Grouping dimension: Accident Year (AY)

e We can build a parsimonious non-linear model that uses random
effects to allow the model parameters to vary by accident year.

Copyright © 2008 Deloitte Development LLC. All rights reserved. 27



Growth Curves

e Let’s build a non-linear
model of the loss
triangle.

e GLM shows up a lot in the
stochastic loss reserving
literature.

e But... are GLMs natural
models for loss triangles?

e Uses growth curve to
model the loss
development process

e 2-parameter curves
e 0 = scale
e » = shape

e Basic idea: we fit these
curves to the LDFs and
add random effects to 0
and/or o to allow the
curves to vary by year.

Copyright © 2008 Deloitte Development LLC. All rights reserved.
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Baseline Model: Heuristics

 Basic intuition is familiar: (CL,y.) * (LDF) = Ult loss

> Clay, = (Ult loss,y)*(1 / LDF)) Ivd

-> CLAY,t = (Ult IossAY)*Gwle(t) + error /

CumlLoss ,y ,,, =ULT |1 - exp(— (dev/0)” ) + €47 dev

ULTAY ~ N(:L‘ULTaG(zJLT)
Var(e ,y 4,) =0 2CLAY,dev

e The “growth curve” part comes in by using G(t) instead of LDFs.
e Think of LDF’s as a rough piecewise linear approximation to a G(t)

e The “hierarchical” part comes in because we can let ULT,,, », and/or 6
vary by AY (using sub-models).

Copyright © 2008 Deloitte Development LLC. All rights reserved. 29



Including Exposures in the Model

Our model so far: CumLoss ,y ,, :ULTAY[I—exp(— (dev/@)w)J+ E 4 dev
ULT,, ~ N(IUULT?GIZJLT)

_ 20T
Var(gAY,dev) =0 CLAY,dev

What if we wish to include an exposure measure in the model?

It's easily done: CumlLoss ,y .., = prem *LRAyll—GXP(— (deV/H)w)JJ“gAY,dev

LR,y ~ @’ fR )
Var(gAY,dev) =0 ?LAY,dev

prem,, is given; LR,, are hyperparameters; p , and c,; are
parameters.

* u i and o replace p,;+ and o+

e | is essentially a "Cape Cod” style LR estimate for all years combined.

® {LRyg9;, LR gg5/---r LRyggo, + are “credibility weighted” LR estimates for each of the
individual accident years.
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Other "Random Effects”

Our model so far:

CumlLoss ;y 4, =ULT,, [1 — exp(— (dev/0)” )J+ E 47 dev
ULTAY ~ N(:“ULTaG(zJLT)

_ 20T
Var(gAY,dev) =0 CLAY,dev

What if we want to include other random effects in the model?

It's easily done:

CumlLoss ;y ,,, =ULT,, [1 — eXp(— (dev/0)” )J+ E 4¥ dev

(ULTAYJ N N(IUULT ,Z] 3= GlszT GUL;’,a)
@ Oyt OuLr.o O,

_ 27
Var(gAY,dev) =0 CLAY,dev

Here we add a “random warp” effect to let o vary by AY.
e Can also add “random scale” (0) effect if we want.

We can compare AIC and diagnostic plots to judge whether this

improves the model.
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Baseline Model Performance

Cumulative losses @ dev =

(Ult losses) * (modeled growth)

S

We must estimate the parameters:

{uyLyr ®7 9; oyr7 OF

Weibull Growth Curve Loss Development Model
— AY

ULT,, ~ N(:uULTﬁaéLT)

_ 27
Var (8AY,dev) =0 CLAY,dev

CumlLoss,y ., =ULT,, ll — exp(— (dev/0)® )J+ & 47 dev
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Baseline Model Performance

The random

effects allow a

“custom fit”

growth curve for

CumlLoss ,y 4, =ULT,, ll — exp(— (dev/0)” )J+ E 1Y dev
ULTy ~ N(.'uULT’GéLT)

-
Var(& 1y ge,) =0 CL 4y 4oy

Weibull Growth Curve Loss Development Model

each AY while — fixed  — AY
malntalnlng [ R R R 2|0 4|0 6|0 8|0 1?0 2|0 4|0 6|0 8|0 1?0 [ R R R
. 1996 1997 1999 2000
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: 1
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SO 6000 1 -
g
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4000
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- 3000
contains only 5 o |
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but fits the loss
triangle very well

1000 1
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Residual Diagnostics

e An advantage of stochastic reserving in general — and this method in
particular — is that it enables us to use residual diagnostic analysis.

residual histogram Normal Q-Q Plot actual vs predicted
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Model Results

e The overall o/s reserve estimate is close to that of the chain ladder $18.7M.

CHAIN LADDER METHOD

AY 12 24 36 48 60 72 84 96 108 120 reported est ult  reserve
1991 358 1,125 1,735 2,183 2,746 3,320 3,466 3,606 3,834 3,901 3,901 3,901 0
1992 352 1,236 2,170 3,353 3,799 4,120 4,648 4,914 5,339 5,339 5,434 95
1993 291 1,292 2,219 3,235 3,986 4,133 4,629 4,909 4,909 5,379 470
1994 311 1,419 2,195 3,757 4,030 4,382 4,588 4,588 5,298 710
1995 443 1,136 2,128 2,898 3,403 3,873 3,873 4,858 985
1996 396 1,333 2,181 2,986 3,692 3,692 5,111 1,419
1997 441 1,288 3,483

3,483 5672 89 ; ;
1998 359 1,421 2,864 6,787 U_LT1998 I_S lower in
1999 377 1,363 1,363 5,644 4,281 hierarchical model
2000 344 344 4,971 4,627 than chain ladder.
chain link 3.491 1747 1.455 1.176 1.104 1.086 1.054 1.077 1.018 T 34,358 53,055 18,697]
chain Idf 14.451 4140 2.369 1.628 1.384 1.254 1.155 1.096 1.018 1.000
growth cune  6.9% 24.2% 42.2% 61.4% 72.2% 79.7% 86.6% 91.3% 98.3% 100.0% Cum losses @36
Parameters and Estimated Reserves - Baseline Model disproportionately
AY dev omega theta growth  reported  eval120  eval240 ULT  reserves high for 1998.
1991 114 1.306 46.638 96.0% 3,901 3,943 4,073 4,074 172
1992 102 1.306 46.638 93.8% 5,339 5,239 5,412 5,413 74
1993 90 1.306 46.638 90.6% 4,909 5,207 5,379 5,380 470 ; ;
1994 78 1.306 46.638 85.9% 4,588 5,423 5,602 5,603 1,015 This data pomt_has
1995 66| | 1.306 46.638| 79.3% 3873 4777 4,935 | 4,936 1,062 more leverage in the
1996 54| | 1.306 46.638] 70.2% 3,692 5,052 5219 | 5,220 1,528 chain ladder method.
1997 42 1.306 46.638 58.2% 3,483 5,512 5,694 5,695 2,21
1998 30 1.306 46.638 43.0% 2,864 5,850 6,043 6,044
1999 18 1.306 46.638 25.0% 1,363 5,255 5,429 5,430 4,067
2000 6 1.306 46.638 6.6% 344 5,101 5,270 5,271 4,927

total R / 53,066 18,708

These are the 12 hierarchical model parameters.
| . . uyr = 5306.6
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A Word About Software

e | used the open-source R statistical programming environment to fit
these models.

e High level, statistically advanced, widely used amongst academics and practitioners in
most fields.

e Becoming common in the actuarial community.
e Another CAS annual meeting presentation:

C-17: LOSS RESERVING WITH R

Tuesday, Movember 18, 10:00 a.m. — 11:30 a.m.

R is a free, open-source (GPL-licensed) software environment that has becorme very popular in
academic, scientific, and financial cormmrmunities for statistical modeling and problem solving, Cas
mernbers may be familiar with the application of R to predictive modeling. This session will show
how F can also be used for reserving. Markus Gesmann wrote the R ChainLadder package which
carries aut some of the basic deterministic and stochastic reserving rmethods familiar to casualty
actuaries, Vincent Goulet wrote the R package actuar that provides additional R functionality in
loss distribution modeling, credibility theory, and risl and ruin theory. Mincent will begin this
session with a brief introaduction to the R language and actuar. Dan Murphy will show how to use
R with Excel wia the add-in RExcel. Markus will then give a live demonstration of the capabilities
of his ChainLadder package. The session will focus on R as a tool rather than on advanced
actuarial technigques. attendees can expect to leave the session somewhat more at ease with the
notian that actuarial reserving methods and models need not be relegated to the realm of the
spreadsheet,

Moderator:

Simon Lilley, Senior Actuarnal Associate, SAFECO Insurance Companies
Panelists:

Markus Gesrann, Chief Analyst, Lloyd's of London

Yincent Goulet, Assaociate Professar, Université Laval

Daniel Murphy, Trinostics
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