Predictive Modeling for WC Reserves

Richard E. Sherman, FCAS, MAAA

A Typical WC Reserve Analysis: 15 DYs

Estimating the WC Tail @ DY 15

You have 15 year triangle & the latest large claim listing. Your options?

- Accept the case?
- Extrapolate ILDFs and PLDFs? How?
- Use external data? Different state?
- Adjust the case? Use a primitive predictive model?
- Use more complex predictive models?

Dead on Arrival (DOA) Data

Drop Your Aggregate Baggage

- Actuaries conditioned to apply methods to aggregate loss experience by AY, etc.
 Need to start over and focus on individual permanent disability claims as a basis for applying predictive modeling techniques.
- Use predictive models at both the individual claim level and on an aggregate basis.

Accept the Case Reserve?

- What rate of medical inflation was assumed, if any?
- Stair-stepping is quite common.
- Medical condition often evolves with aging.
- Reopened claims potential.
- Expected value of future payments is typically 25%-60% higher than the sum of projected payments until age at death.

A Very Simple PPD Claim

Jeremy's right leg amputated in 2004 because of work injury. He is 55.

Artificial leg costs \$1,000.

 Leg must be replaced every 15 years, at double the prior cost.

Jeremy is expected to live until age 78, so adjuster sets up a case reserve to cover one replacement leg when Jeremy is 70.

Three Scenarios

Scenario			Total Future
(Age at	Number	Cost of New	Payments
Death)	of Legs	Leg	
< 70	0	\$0	\$0
70 - 84	1	\$2,000	\$2,000
85 +	2	\$4,000	\$6,000

Expected Value – 4.7% Med. Infl.

Age at Death	Future Payments	Probability	Fut. Pay x Probability
		Tiobability	
< 70	\$0	25 %	\$0
70 - 84	\$2,000	50 %	\$1,000
85 +	\$6,000	25 %	\$1,500
Expected	e Payments	\$2,500	

Expected Value – 9.7% Med. Infl.

Age at Death	Future Payments	Probability	Fut. Pay x Probability
< 70	\$0	25 %	\$0
70 - 84	\$4,000	50 %	\$2,000
85 +	\$20,000	25 %	\$5,000
Expected \	\$7,000		

Estimating the WC Tail, PCAS 2005

Expected value of future payments is typically 25%-60% higher than the sum of projected payments until age at death.

See Section 8 of Paper

Adjusting the Case Reserve Using A Large Claim Listing

Data in the large claim listing (AY, DY, Age at Injury or Current Age, Paid to Date, Case Reserve, Injury Description, Gender) <u>A Typical Approach</u>:

- Split reserve into medical and indemnity.
- What rate of future medical cost escalation was assumed by the claims adjuster?
- Remove adjuster's medical cost escalation adjustment, using the claimant's life expectancy.
- Assume constant on-level incremental paids until claimant dies or claim is closed, and inflate future medical payments at your chosen rate of medical cost escalation.

Different Approaches

- Simple Simon: Just project payments until expected year of death, assuming medical inflation?
- Smart Simon: Get series of large claim listings. Apply Shawn's approach. Obtain a better estimate of next year's increm paid by claim, based on regression. Apply this successively?
- Apply Markov chain projections.....
- Do on-level increm paids remain flat?
- Do perm dis claims close for reasons other than death?

Workers Compensation Medical Permanent Disability (MPD)

Paid Loss Development Factors

SAIF's Actual PLDFs – 1.0

SAIF PLDFs Less 1.0

We assume a brontosaurus tail.

PLDFs – 1.0 Out to DY 58

SAIF's Actual PLDFs - 1.0

Washington State Fund PLDFs – 1.0

Washington State Fund

MPD payments: Stegosaurus tail.

Two Radically Different Payment Distributions in WC

- Short term payments
- Lifetime payments to permanently disabled claimants.
- Reviewing paid data for the first 15 DYs key in predicting future short term payments, but it provides highly misleading indications of the extent of future lifetime payments to perm dis claimants.

Mortality Model vs. SAIF's Actual

- 9% rate of future medical cost escalation assumed.
- Mortality rates of general population assumed.
- Model fit well out to development year (DY) 40.
- Model noticeably underestimated actual development beyond DY 40.

Types of WC Data Available

Aggregate incremental paid by AY and DY
Same, but separately for PTD & PPD
Aggregate open counts by AY and DY
Large claim listing
Large claim listings for the past 5 yearends
Perm Dis increm paids for past 5 CYs, and gender, age at injury, PTD v. PPD and AY/DY.

Define Predictive Modeling for WC Reserving

- Determining the relationship of incremental payments (the dependent variable) to various independent variables.
- Utilization of the above relationships and the future values of independent variables to forecast future payments.

Types of WC Reserving Predictive Models

- Markov Chain Incr. Pd Fcn of prior increm paids and current case reserve.
- Markov Chain Incremental Payments (Prob of Closure vs. Death Rate, Prob of Change in Increm Paid v. DY, Age)

Mortality Method with Incremental Severities

Incremental Severity by DY and Age at Injury, Gender and PTD vs. PPD

One Large Claim Listing

- Shows cumulative paid and case reserve for each large claim. Also shows current age, gender and type of injury.
- A possible model: Divide case reserve (with no future medical inflation anticipated) by life expectancy. Inflate expected future payments.
- Use mortality table probabilities of death to create a Markov Chain simulation of future payments. Will discover that expected value of future payments is much greater than sum of inflated payments up to the expected age at death.

Five Successive Large Claim Listings

- Can calculate incremental payments by claim for the last 4 CYs.
- Can note the ratio of incremental payments to the decline in the case reserve (runoff ratio).
- Can use three oldest incremental paids and the prior year's case reserve (divided by life expectancy) to predict the latest year's incremental paid and determine which is better correlated.
- Can use above correlations to predict next year's incremental paid.

Calculating Regression Factors

						Average	
Claim		Paid in Calendar Year					
Number	2000	2001	2002	2003	2004	Payment	
1	100	200	200	200	250	190	
2	300	400	500	600	700	500	
3	1,000	1,000	1,000	1,000	1,000	1,000	
4	10,000	25,000	40	10,000	5,000	10,008	
	Current	Future	Estimated		Paid		
Claim	Case	Life	Annual		in		
Number	Reserve	Expectancy	Payment		2005		
1	1,000	20.0	50		300		
2	100	10.0	10		200		
3	5,000	8.0	625		1,200		
4	50 000	16.0	3.125		15.000		

Regression Formula

Paid in 2005 = α_1 x Avg Annual Pmt + α_2 x Avg Case Reserve + β

Calculating Next Year's Payment

_							Average
	Claim		Paid	in Calendar	Year		Annual
	Number	2001	2002	2003	2004	2005	Payment
	1	200	200	200	250	300	230
	2	400	500	600	700	200	480
	3	1,000	1,000	1,000	1,000	1,200	1,040
	4	25,000	40	10,000	5,000	15,000	11,008
_		Current	Future	Estimated		Paid	
	Claim	Case	Life	Annual		in	
	Number	Reserve	Expectancy	Payment		2006	
	1	970	19.5	50		222	
	2	1,000	9.5	105		464	
	3	3,800	7.5	507		1,088	
	4	75,000	15.5	4,839		11,359	

Regression Formula

Paid in 2006 = 0.9 x Avg Annual Pmt + 0.3 x Avg Case Reserve + 0.0

AY 1980 Perm. Dis. Claims

Claim No.	CY 2005	CY 2006	CY 2007
1	600	700	750
2	1000 1100)
3	2500	2800	3200
TOT. PAID	4100	4600	3950
# Open	4	4	3
Incr. Sev.	1025	1150	1317

	Incremental	Paid		
AY	DY 26	DY 27	DY 28	
1980	60,000	58,000	52,300	
1981	74,600	68,300		
	Prior	Open Counts		
AY	DY 26	DY 27	DY 28	
1980	12	11	9	
1981	14	12		
	Incremental	Paid per Prior	Open	
AY	DY 26	DY 27	DY 28	
1980	5,000	5,273	5,811	
1981	5,329	5,692		

		Incre	mental	Paid	
AY	DY 27	DY 28	DY 29	DY 30	DY 31
1980	58,000	52,300	8 * 6 , 200	8 * 6,600	7 * 7 ,050
1981	68,300	11 * 6,050	10 * 6,450	9 * 6,900	8 * 7,400
		Prior	Open	Counts	$\langle \rangle$
AY	DY 27	DY 28	DY 29	DY 30	DY 31
1980	11	9	8	8	7
1981	12	<u>11</u>	10	9	8
	Incre	mental	Paid per	Prior	Open
AY	DY 27	DY 28	DY 29	DY 30	DY 31
1980	5,273	5,811	<i>6,200</i>	6,600	7,050
1981	5,692	6,050	6,450	6,900	7,400

The Need to Separate

- 1. The effects of mortality on the remaining number of open claims; and
- 2. The effects of medical cost escalation on claim severities.

This <u>cannot</u> be done with the standard paid loss development method.

Opposite Influences

OPEN COUNTS PROJECTED USING MORTALITY FACTORS (AND CLAIM CLOSURE RATES)

AVERAGE PAYMENTS PROJECTED USING MEDICAL ESCALATION RATES

Dead on Arrival (DOA) Data

Deriving & Expanding Incremental Paid

	<u>AY</u>	<u>12</u>	<u>24</u>	<u>36</u>		
Cumulative	2002	3,000	18,000	28,000		
Paid Losses	2003	3,000	18,000			
(\$000's)	2004	3,000				
	<u>AY</u>	<u>CY 02</u>	<u>CY 03</u>	<u>CY 04</u>		
Incremental	2000	10,000	4,000	2,500		
Paid (\$000's)	2001	15,000	10,000	4,000		
	<u>AY</u>	<u>12</u>	<u>24</u>	<u>36</u>	<u>48</u>	<u>60</u>
	2000			10,000	4,000	2,500
	2001		15,000	10,000	4,000	
Incremental	2002	3,000	15,000	10,000		
Paid (\$000's)	2003	3,000	15,000			
	2004	3,000				

Incremental Paid per Claim with Payment (at 2003 Cost Level)

Separate Frequency & Severity Analyses

- Compare claim closure rates with rates of mortality – Calculate relativities (e.g., 150%)
 Nuclearly of the second se
- Need to have current ages and genders of all remaining claimants.
- Track any movements in on-level severities over many years.
- Indications will be volatile unless open counts for each AY are sizeable.

Claim Closure/Mortality Relativities

	DY 40	DY 41	DY 42
# of Claim Closures	8	11	9
Expected Deaths	4.6	4.9	5.4
Relativity	1.74	2.24	1.67

Predictive Models Stabilize Extrapolations

Volume of Open Counts will drop for higher DYs, making frequency and severity indications increasingly volatile.

Actuary will impose judgment and indications from predictive models to cope with the high volatility for higher DYs.

Why the rise in on-level incremental severities for late DYs?

- Answered by developing a more detailed predictive model.
- On-level incremental severities examined by age-atinjury, gender, claim type & DY.
- As the DY increases, the composition of surviving claimants by age-at-injury shifts dramatically to lower ages, where on-level severities are much higher.
- Younger workers are given the hazardous jobs.

Average On-Level Incremental Paid

Avg Age	DYs	DYs	DYs	DYs
<u>at Injury</u>	<u>16-25</u>	<u>26-40</u>	<u>41+</u>	<u>16+</u>
15-35	5,957	8,579	16,094	7,482
36-45	5,495	6,707		5,952
46+	2,647	5,132		3,509
All	4,630	7,126	11,749	

Multiple Regression

Dependent Variable:

On Level Incremental Severity

Independent Variables:

Age-at-Injury, DY

% Young at Injury by DY

DY	20	30	40	50	60
% Young At Injury	46%	57%	71%	87%	98%

\$7,000 Young & \$3,500 Older

	DY 20	DY 30	DY 40	DY 50	DY 60
% Injured Young	46%	57%	71%	87%	98%
Wtd. Severity	5,100	5,495	5,985	6,545	6,930

Average On-Level Incremental Paid

Avg Age	DYs	DYs	DYs	DYs
<u>at Injury</u>	<u>16-25</u>	<u>26-40</u>	<u>41+</u>	<u>16+</u>
15-35	5,957	8,579	16,094	7,482
36-45	5,495	6,707		5,952
46+	2,647	5,132		3,509
All	4,630	7,126	11,749	