Time Horizons in Risk Assessment
CAS 2008 Annual Meeting
Seattle, WA
November 16-19, 2008
Michael Wacek

Time Dependency of Financial Variables

- Many financial values vary over time, e.g.:
- Stock prices
- Ultimate loss ratio estimates
- Capital (GAAP and statutory)
- Such values can be seen as observations from a time-dependent stochastic process

Market Value of Common Stocks S\&P 500 Stock Index

Estimated Ultimate Loss Ratio
 Commercial Auto Liability (U.S. Industry) / Accident Year 2003

Statutory Capital \& Surplus Odyssey America Reinsurance Corporation

Temporal Aspects of Risk Assessment

- Risk assessment is about the future
- How will financial variables behave...?
- Tomorrow
- Next week
- Next quarter
- Next year
- Selected time horizon depends on context and purpose

Value-at-Risk (VaR)

- VaR has emerged as a favorite financial risk measure
- Defines downside risk as the amount of loss corresponding to a given cumulative probability ("confidence level")
- VaR $_{99.5 \%}$ refers to the 99.5 percentile loss (adverse change) amount
- Because financial risks are time-dependent, a time horizon must also be defined
- Traders typically use daily time horizon
- Solvency II calls for one-year time horizon

Value-at-Risk Time Horizons

- Shorter time horizons typically imply lower $\operatorname{VaR}_{\alpha}$ amounts for given α
- Daily $\operatorname{VaR}_{99 \%} \leq$ One-Year $\operatorname{VaR}_{99 \%}$
- Shorter time horizons typically imply higher confidence level statements
- Daily $\operatorname{VaR}_{99 \%}=$ One-Year $\operatorname{VaR}_{99 \%-\mathrm{c}}(0<\mathrm{c}<99 \%)$
- Similar to effect in cat analysis of using smaller or larger geographic regions for probability statements, e.g.:
- 100-year return time Louisiana-only loss amount (Louisiana VaR $_{99 \%}$) typically less than countrywide $\mathrm{VaR}_{99 \%}$ loss amount

Commercial Auto Liability Example Accident Year 2007

- Estimated ultimate net loss ratio
- U.S. industry
- Schedule P (Part 2 Losses / Part 1 Premiums)
- 62.4\% as of 12/31/07
- How will that estimate change over ...
- One year?
- Two years?
- Time to ultimate settlement?
- History provides a guide

Prospective Path of Ultimate Loss Ratio Estimates

 Commercial Auto Liability / Accident Year 2007

Prospective Path of Ultimate Loss Ratio Estimates

 Commercial Auto Liability / Accident Year 2007Based on Paths of Historical Loss Ratio Estimates with Illustrative VaR Line

Prospective Path of Ultimate Loss Ratio Estimates

 Commercial Auto Liability / Accident Year 2007Based on Paths of Historical Loss Ratio Estimates with Illustrative VaR Line

Prospective Path of Ultimate Loss Ratio Estimates

 Commercial Auto Liability / Accident Year 2007Based on Paths of Historical Loss Ratio Estimates with Illustrative VaR Line

Prospective Path of Ultimate Loss Ratio Estimates

 Commercial Auto Liability / Accident Year 2007Based on Paths of Historical Loss Ratio Estimates with Illustrative VaR Line

Prospective Path of Ultimate Loss Ratio Estimates

 Commercial Auto Liability / Accident Year 2007Based on Paths of Historical Loss Ratio Estimates with Illustrative VaR Line

Prospective Path of Ultimate Loss Ratio Estimates

 Commercial Auto Liability / Accident Year 2007

Prospective Path of Ultimate Loss Ratio Estimates

 Commercial Auto Liability / Accident Year 2007

Prospective Path of Ultimate Loss Ratio Estimates

 Commercial Auto Liability / Accident Year 2007

Choice of Time Horizon for Risk Assessment Case for One-Year Horizon

- Coincides with main time unit used for financial reporting
- Corresponds to typical insurer planning horizon
- Many financial and insurance variables expressed in annual terms, e.g.:
- Interest rates
- Investment returns
- Common stock volatility
- Loss ratios
- Loss development
- Natural horizon for enterprise risk management
- Solvency II uses one-year horizon $\operatorname{VaR}_{99.5 \%}$

Choice of Time Horizon for Risk Assessment Case for Longer than One-Year Horizon

- Implies larger capital requirement, thus providing greater solvency protection

Capital Adequacy / One-Year Horizon

- One-year horizon consistent with strong solvency protection
- Butsic pioneered concept in early 1990s
- "Solvency Measurement for Property-Liability Risk-Based Capital Applications"
- Argued that long term solvency protection achievable by periodic capital rebalancing to maintain a constant low exposure to insolvency over a short horizon

Capital Adequacy / One-Year Horizon

- Yours truly presented a fully elaborated example of Butsic's approach in a 2007 paper
- "Consistent Measurement of Property-Casualty Risk-Based Capital Adequacy"
- Paper calibrated capital to a target Expected Policyholder Deficit (EPD)
- Would work equally well with VaR or TVaR
- Several of the following charts are taken from that 2007 paper

Excerpt A from Wacek Paper

Excerpt B from Wacek Paper

Excerpt C from Wacek Paper

Excerpt D from Wacek Paper

FIGURE D

Accident Year 1999 Actual \& Hindsight Unpaid Loss Ratio Estimates: 1999-2004
Within 95\% Confidence Intervals for One Year Horizon
Commercial Auto Liability

Excerpt E from Wacek Paper

FIGURE E

Risk-Based Capital for Accident Year 1999 Unpaid Losses: 1999-2004
Commercial Auto Liability
1999 Premiums of $\$ 100$
Required Capital = 15\% of Unpaid Losses

Enterprise Risk Management / One Year Horizon

- ERM requires aggregation of risks from all sources
- Aggregation requires common time horizon
- One-year risk horizon fits with typical insurer planning horizon
- Example to follow

ERM Example - ABC Insurance Holdings, Inc.

- Hypothetical insurance holding company
- September 30, 2008 consolidated GAAP equity of $\$ 1$ billion
- Key measure: One-year CHANGE IN GAAP EQUITY from 9/30/08
- Enterprise risks modeled separately and in combination

ERM Example - ABC Insurance Holdings, Inc.

- ERM modeling date: 9/30/08
- Prospective Underwriting Risks through 9/30/09
- Accident year ending 9/30/09 as of 9/30/09
- Underwriting result with expected catastrophe losses
- "Unexpected" catastrophe losses (deviation from expected)
- Prior accident year loss reserve development
- Ceded reinsurance (change in reserve for uncollectibles)
- Prospective Investment Risks through 9/30/09
- Bonds
- Common stocks
- Cash
- Other invested assets and liabilities (e.g., credit default swaps)

ABC Insurance Holdings Value-at-Risk Table

ABC Insurance Holdings Downside / Upside Profile

ABC Insurance Holdings - TVaR Loss Profile

ABC Insurance Company - TVaR Gain Profile

Q \& A

