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Method vs. ModelMethod vs. Model

Mathematical description of the world

“Best-Fitted” Parameters

Selections can be tested

Mack, Bootstrapping models

Mathematical algorithm for estimating 
unpaid amounts

Parameters are selected 

Selections assumed appropriate based on 
judgment

Chain Ladder algorithm

Model Method
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Several distinct types of risks are inherent in the
measurement of claim liabilities — the actuary and the audience 
need to be clear about which are relevant to a particular application

Actual 
Outcome

Model Estimate 
of Expected 

Outcome

True 
Expected 
Outcome

Process Risk Parameter Risk Model Risk

Total Risk

Roll of fair die, 
equal chance of 

one to six

Constant with volume

Roll of loaded die, 
no longer sure of 

probabilities

Decreases with volume

Roll of trick die not 
numbered one to six, 
not sure what is on 

each side
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Several distinct types of risks are inherent in the
measurement of claim liabilities — the relevant risks depend on the 
intended use of the analysis

Financial Solvency/Capital adequacy context
“Stress testing” the balance sheet
Variation of actual outcome around the true expected outcome
All types of risk are relevant here

Reserve variability context 
Comparing two actuarial estimates
— Variation around the true expected outcome
— Parameter and model risk are relevant here
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What “risk” do stochastic methods measure?

Risk could mean different things to different audiences

Actuaries usually think of risk in terms of “variance” and “standard deviation”
“coefficient of variation” (CV) is “scaled” by the mean and measures “relative” risk

Other definitions
(VAR) - Value at Risk: a percentile (i.e. losses at the 75th)
(TVar) – Tail value at Risk: expected losses in excess of a given percentile
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Deterministic:  What range of estimates 
is implied by the actuarial techniques used?

Estimate range of claim liabilities based on 
the results of several projections

Applied to current data evaluation

General Approach — Deterministic

Advantages Disadvantages

Easy to 
understand and 
apply

Based on liability 
estimates of 
traditional 
actuarial methods

No extra work 
needed

Does not include 
process risk

Does not 
separate model 
and parameter 
risk

Does not produce 
confidence 
interval estimates

Highly judgmental

Simplistic

Indicated Liabilities

Inc’d 
LDF

Paid 
LDF

Inc’d 
“BF”

“fxs” Industry

Actuarial Technique

High Estimate

Central Estimate
Low Estimate
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Performance Test:  How accurate 
have the past estimates proven to be?

Actuarial Scorecard for Method X

12/95

12/96

12/97

12/98

12/99

12/00

12/01

12/02

12/03

12/04

12/05

12/06

Current view of % 
deficiency/redundancy

At year-end:

Retrospective test of a consistently applied 
methodology

Uses current view of claim liabilities versus 
historical estimates

Quantifies the degree of departure that has 
occurred around the results that would have been 
indicated by that methodology

General Approach — Hindcast Test

Advantages Disadvantages
Easy to understand 
and apply

Few assumptions 
needed for each 
model being tested

Should do this test 
anyway in arriving at 
central estimate

Does not separate 
model, parameter and 
process risk

Does not produce 
confidence interval 
estimates

The actual “model”
used is likely a 
combination of 
methods



9

Stochastic:  What claim liability 
outcomes are reasonably likely?
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Indicated Unpaid Claim Liabilities as 
of December 31, 2008

Estimate probability distribution

Based on statistical methods

Applied to historical development data

General Approach — Stochastic Methods

Advantages Disadvantages
Produces estimates of 
confidence intervals

Can approximately 
separate parameter 
and process risk

More complete 
description of loss 
generating process

Feeds other analyses 
(ERM)

Involves relatively 
complex statistical 
analysis
An emerging practice 
within P/C actuarial 
field
Lack of general 
agreement among
actuaries on the best 
approach
Some exposures not 
amenable to this 
approach (A&E)



Popular Stochastic Methods
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Simulation approach: Monte-Carlo

Simulation techniques help model the complex loss generating process

Simulation methods assume that the simulated data has the same statistical 
characteristics as the actual data

Simulation works as follows:
Start with a deterministic method that generates ultimate loss outcomes (i.e. 
chain ladder)
Makes assumptions about the method parameters
— i.e. the mean and variance of the link ratios

– Parameter risk needs to handled separately
— Randomly generate input values
— Calculate and save ultimate outcomes
— Repeat many times
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Output simulated distribution

The simulated “empirical” distribution 
provides an estimate of the “theoretical” claim 
liabilities distribution

A number of statistics are produced (i.e. 
mean, variance, skewness, etc.)

Simulated distribution “smooths” with a larger 
number of simulations
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Monte Carlo simulations: Pros and Cons

Data outliers can have a 
leveraged effect on the 
results

Needs additional complexity 
to measure parameter risk

Popular method in many 
sciences

Produces an empirical 
distribution of the 
reserves

Method can be applied to 
incomplete data triangles  
(i.e. trapezoids)

It explicitly calculates tail 
volatility

ConsPros
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Bootstrapping is a “second generation” simulation technique

Monte Carlo techniques simulate the parameter inputs of a method

Bootstrapping simulates the actual data employed by these methods
If the distribution of the data is known, then we sample from that distribution
— Parameters are estimated
— This is called Parametric Bootstrapping
If we do not know the distribution of the data, then we simulate from the actual 
data
— This is called Nonparametric Bootstrapping
— The process “resample” the residuals with “replacement”

References
“Analytic and bootstrap estimates of prediction errors in claims reserving”

by England & Verall, “Insurance Mathematics and Economics” (1999) pg. 281-293
“”Addendum to Analytic and Bootstrap Estimates of Prediction Errors in Claims 
Reserving”:

by England, “City University London, School of Mathematics” (2001)
“Bootstrap methodology in claim reserving”

by Pinheiro, Andrade e Silva & de Lourdes Centeno, “Journal of Risk and Insurance”
(2003) pg. 701-714
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Background of the bootstrapping technique

Based on a generalized linear “over-dispersed Poisson” (GLM) model where Cij are 
the incremental payments:

E(Cij) = mij and Var(Cij) = φ*mij

Cij have a probability density function f:

Cij = f(c; mij, φ):
f(.) belongs to the exponential family;
The mean is linked to the linear predictor through a logarithmic link function:
log(mij) = nij, where:
nij = c + ai + bj; with a1=b1=0 to avoid overparameterization; and
φ is the “scale” parameter

The model described above gives exactly the same reserve estimates as the 
deterministic chain ladder method

The fitting process that calculates the optimal parameters of the model is complicated

The bootstrapping technique replaces the analytical calculation of the parameter and 
process risk with a simulation approach
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Step-by-step description of the Bootstrapping algorithm

Actual Cumulative Historical Losses:

Accident Development Age
Year 12 24 36 48 60

1 1,000 1,500 1,800 2,000 2,100
2 1,200 1,900 2,150 2,300
3 1,700 2,400 3,000
4 2,000 2,900
5 2,100

12-24 24-36 36-48 48-60 60-Ult
Selected RTRs 1.475 1.198 1.089 1.050 1.000

Expected Cumulative Paid Losses:

Accident Development Age
Year 12 24 36 48 60

1 1,040 1,533 1,837 2,000 2,100
2 1,196 1,763 2,113 2,300
3 1,698 2,504 3,000
4 1,967 2,900
5 2,100

For Example:
2,504 = 3,000 / 1.198

Keep current diagonal intact

Employ selected RTR factors to 
calculate expected cumulative 
payments
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The Bootstrapping technique 
calculates residuals based on incremental losses

Actual Incremental Historical Losses:

Accident Development Age
Year 12 24 36 48 60

1 1,000 500 300 200 100
2 1,200 700 250 150
3 1,700 700 600
4 2,000 900
5 2,100

Expected Incremental Paid Losses:

Accident Development Age
Year 12 24 36 48 60

1 1,040 493 304 163 100
2 1,196 567 350 187
3 1,698 806 496
4 1,967 933
5 2,100

"Unscaled" Pearson Residuals:

Accident Development Age
Year 12 24 36 48 60

1 -1.233 0.295 -0.229 2.916 0.000
2 0.124 5.564 -5.327 -2.719
3 0.052 -3.726 4.650
4 0.752 -1.091
5 0.000

For Example:

 -1.091 = 933
933900 −

ijPr

The “unscaled” Pearson residuals 
are defined as:

The denominator represents the 
standard error of the incremental 
losses

The Pearson residuals are 
“unscaled” in the sense they 
exclude φ which is needed only 
when considering the process 
error

The (5,12) and (1,60) residuals 
will be zero. They could be 
excluded from the remainder of 
the analysis 

ij

ijij
P m

mC
r

ij

−
=
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The “unscaled” Pearson residuals need 
to be adjusted for the “degrees of freedom”

"Unscaled" Pearson Residuals:

Accident Development Age
Year 12 24 36 48 60

1 -1.233 0.295 -0.229 2.916 0.000
2 0.124 5.564 -5.327 -2.719
3 0.052 -3.726 4.650
4 0.752 -1.091
5 0.000

Degrees of Freedom adjustment factor: 1.581 = 

"Adjusted" Pearson Residuals:

Accident Development Age
Year 12 24 36 48 60

1 -1.950 0.466 -0.363 4.611 0.000
2 0.195 8.797 -8.422 -4.300
3 0.083 -5.891 7.352
4 1.188 -1.725
5 0.000

For Example:
-1.725 = -1.091 x 1.581

915
15

−

ijPr
The “Unscaled” Pearson 
residuals need to be adjusted for 
the difference in the degrees of 
freedom between the analytical 
model and the bootstrapping 
technique 

The adjustment is equal to:

pn
n
−

In general, n-p represent the 
degrees of freedom of a model

Where n = 15 is the number of 
data points and 

p = 9 are the parameters that 
need to be estimated
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Simulation of “pseudo” incremental loss data

The resampling of the “Adjusted”
Pearson residuals is based on the 
assumption that the residuals are 
independent and identically 
distributed

The sampling with replacement 
could cause the sampled 
residuals to appear more than 
once

The “pseudo” incremental loss 
data is created by solving the 
Pearson residual equation

ijijPij mmrC
ij

+= **

"Adjusted" Pearson Residuals:

Accident Development Age
Year 12 24 36 48 60

1 -1.950 0.466 -0.363 4.611 0.000
2 0.195 8.797 -8.422 -4.300
3 0.083 -5.891 7.352
4 1.188 -1.725
5 0.000

Sampling with replacement of the Pearson Residuals:

Accident Development Age
Year 12 24 36 48 60

1 -5.891 7.352 -0.363 -0.363 4.611
2 8.797 8.797 -5.891 7.352
3 4.611 -1.950 -4.300
4 -8.422 1.188
5 -8.422

"Pseudo" incremental loss data:

Accident Development Age
Year 12 24 36 48 60

1 850 657 298 158 146
2 1,500 777 239 288
3 1,888 750 401
4 1,593 970
5 1,714

For Example:

*
ijPr

*
ijC

933933*188.1970 +=
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Incorporation of process risk
Cumulative "pseudo" loss data and "squaring" of the triangle

Accident Development Age
Year 12 24 36 48 60

1 850 1,507 1,804 1,962 2,109
2 1,500 2,277 2,516 2,804 3,013
3 1,888 2,638 3,039 3,353 3,602
4 1,593 2,563 2,937 3,240 3,481
5 1,714 2,641 3,027 3,339 3,588

12-24 24-36 36-48 48-60 60-Ult
Simulated RTRs 1.541 1.146 1.103 1.074 1.000

Incremental future loss data:

Accident Development Age
Year 12 24 36 48 60

1
2 209
3 314 250
4 374 303 241
5 927 386 312 249

Simulate Incremental payments from a Gamma distribution
with parameters α = mean / φ, and β = φ

Accident Development Age Estimated
Year 12 24 36 48 60 Reserves:

1 0
2 299 299
3 229 335 564
4 349 464 225 1,038
5 822 300 214 129 1,466

Total: 3,367

The bootstrapping technique, up 
to now, has considered 
parameter risk only

The scale parameter can be 
estimated as the Chi-square 
statistic divided by the degrees of 
freedom

027.19
2

=
−

= ∑
pn

rijφ

We simulate from a Gamma 
distribution with the appropriate 
parameter’s transformation. 
Advantages:

a) Simulate from the 
continuous Gamma 
distribution, and
b) avoid simulating values that 
are a multiple of φ from the 
overdispersed Poisson 
distribution
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Standardized “unscaled” Pearson residuals - Theory

The "Unscaled" Pearson Residuals are not necessarily identically distributed

   they can be "standardized" with the help of the Hat Matrix

For a regression model: Y = X*β + ε, we have:

H is the Hat matrix:

where:

X is the Design Matrix and W is the "Weight" Matrix

H has the good property that the Variance/Covariance matrix of the residuals is:

where:

is an estimate of the of the true variance of the error term of the observation

   As a result the "Unscaled" Pearson residuals are "standardized" by:

where:

   hij is the diagonal of the Hat matrix
      the denominator represents the standard error of the residuals

WXWXXXH TT 1)( −=

yHy =
∧

ii

P
P h

r
r ij

ij −
=

1
**

HIe −
∧ 2

σ
2

e

∧

σ
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Standardized “unscaled” Pearson residuals - Practice

"Unscaled" Pearson Residuals:

Accident Development Age
Year 12 24 36 48 60

1 -1.233 0.295 -0.229 2.916 0.000
2 0.124 5.564 -5.327 -2.719
3 0.052 -3.726 4.650
4 0.752 -1.091
5 0.000

Diagonal of the Hat Matrix - hij

Accident Development Age
Year 12 24 36 48 60

1 0.628 0.390 0.379 0.509
2 0.644 0.412 0.413 0.573
3 0.707 0.487 0.526
4 0.785 0.548
5

"Standardized" Pearson Residuals:

Accident Development Age
Year 12 24 36 48 60

1 -2.021 0.378 -0.291 4.160 0.000
2 0.207 7.256 -6.952 -4.160
3 0.097 -5.200 6.752
4 1.623 -1.623
5 0.000

ijPr

**
ijPr

The adjustment in the residuals is 
equal to:

ii

P
p h

r
r ij

ij −
=

1
**

It makes sure that the residuals 
have the same variance as the 
underlying random variable

When the residuals are 
“standardized”, they do not need 
to be “corrected” by the degrees 
of freedom global adjustment 
described above 
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Other Considerations

The bootstrapping stochastic mean might be different from the deterministic mean

Outlier have a leveraged effect on the results of the bootstrap simulations
Outlier residuals could be “tempered” based on inter-quartile distances

Tail variability can be introduced through Sherman inverse power curves

The bootstrapping model is “flexible” enough to incorporate B-F adjustments

The simulations from the Gamma distribution can be problematic in excel
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Bootstrapping: Pros and Cons

Data outliers can have a 
leveraged effect on the 
results

Needs additional complexity 
to measure process risk

Residuals might need to be 
divided into similar 
resampling groups

Actual data “guides” the 
simulation

No assumption needed for 
simulation of parameters

It is a “modern” simulation 
technique

ConsPros



Aggregation of Liabilities
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Aggregation: Correlation between Lines of Business

Strength of the correlation is irrelevant if we only care about the mean reserve 
indication for two lines A and B:

mean(A + B) = mean(A) + mean(B)

Strength of correlation matters when we look towards the ends of the aggregate 
distribution of (A+B)

Generally, the aggregate distribution is less risky than the distribution of the 
individual lines:

75thpercentile(A + B)  <  75thpercentile(A) + 75thpercentile(B)
Equality only occurs in the case of perfect correlation across lines (this is very 
unlikely!)

The volatility of the aggregate distribution increases:
By the volatility of the individual lines
By the correlation between the lines
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Theory of Copulas

Copulas provide a convenient way to express the aggregate distributions of several 
random variables

Copula components:
The distributions of individual random variables
Correlations of these variables

Correlation coefficients measure the overall strength of association across various 
distributions

Copulas can vary that degree of association over the various parts of the aggregate 
distribution

Example: for workers comp and property losses the correlation is higher in the 
tail of the distribution
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Comparison of Copulas
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Questions?


