INTRODUCTION TO RESERVE RANGE THEORY AND PRACTICAL MODEL APPLICATION

CAS ANNUAL MEETING, NOVEMBER 2009

Dan Murphy, FCAS, MAAA Trinostics LLC

Agenda

- Motivation
- Terminology
- Popular stochastic techniques
 - Mack
 - Monte carlo simulation
 - Bootstrapping
- Aggregation of liabilities

Why measure ranges?

- NAIC
 - "We know carried reserves can't be perfectly omniscient. We'll settle for *reasonable*, with justification."
- Rating Agencies
 - Looking for ways to objectify rating
 - Moving from *reserve adequacy* to *economic capital*
- Fair Value Accounting
 - Value of an asset recognizes uncertainty of future cash flows
 - Concept being applied to liabilities
- Economic Capital
 - Sufficient capital to be 99.5% sure that balance sheet entries will not change over the next year by amounts large enough to ruin the firm
 - Solvency II Solvency Capital Requirement (SCR)
- Transparency
 - If Wall Street understood our company better maybe we'd get a better rating

Practical reasons to provide ranges

- People think we already do. We're the math geeks after all!
- If actuaries don't, somebody else will
- Knowing uncertainty of an estimate can improve decisions based on that estimate

A practical situation where knowing a range can help

Home to airport via back roads Average = 43 minutes

Hmm, if I took the freeway I could get in a power nap

Home to airport via freeway Average = 32 minutes (per google maps)

Do I risk being late for you-know-who or take sure bet?

Home to airport via freeway "With traffic add 20-30 minutes"

"Risk comes from not knowing what you're doing."

- Warren Buffet

Attendance at session required to see list!

SSAP 55 vs. GAAP:

Who gave accountants all that say anyway?

- SSAP 55 Effective 2001
 - Management's estimate
 - Management shall record its "best estimate"
 - Ranges of estimates
 - Management may consider a range of reserve estimates
 - The range shall not include the set of all possible outcomes but only those outcomes that are considered reasonable
 - When no estimate within the range *is better than* any other, the *midpoint* of the range is to be accrued
 - When the high end of the range cannot be quantified, management's best estimate shall be recorded
- GAAP
 - When a range of estimates exists and no estimate *is better than* any other, the company shall accrue the *lowest* estimate in the range

Actuarial standards regarding "ranges" originally couched in terms of *actuarial methods*

- ASOP 36 (2000): Statements of Actuarial Opinion Regarding Property/Casualty Loss and Loss Adjustment Expense Reserves
- Company's stated reserve amount should be within the actuary's range of reasonable reserve estimates
- A range of reasonable estimates is a range of estimates that could be produced by appropriate *actuarial methods* or alternative sets of assumptions that the actuary judges to be reasonable
- The reasonable range need not be disclosed

ASOP "range" wording is evolving: becoming broader, more mathematical

ASOP 43 (2007): Property/Casualty Unpaid Claim Estimates

- One should consider uncertainty associated with one's estimate
- Sources of uncertainty may include *model risk,* parameter risk, and process risk
- If a range is specified, its basis should be disclosed, e.g.,
 - Based on individual estimates, each of which is a reasonable estimate on a stand-alone basis
 - A confidence interval produced by a *model or models*
 - A confidence interval reflecting certain risks, such as process risk and parameter risk

Excel-erate Your Mack Method

- What motivates the model behind the Mack methodology?
- How can the calculations be done in a spreadsheet?
- References
 - Mack, "Distribution Free ...," Astin 1993, <u>http://www.casact.org/library/astin/vol23no2/213.pdf</u>
 - Murphy, "Unbiased LDFs," PCAS 1994, <u>http://www.casact.org/pubs/proceed/proceed94/94154.pdf</u>
 - Bardis, Majidi, Murphy, "Flexible Factor Chain Ladder Model," summer *eForum* 2009, <u>http://www.casact.org/pubs/forum/09sumforum/01_Murphy.pdf</u>
 - Barnett, Zehnwirth, "Best Estimates for Reserves," PCAS 2000, <u>http://www.casact.org/pubs/proceed/proceed00/00245.pdf</u>

Does historical variability have anything to say about future variability in a chain ladder application?

ABC Insurance Company

Chain Ladder Loss Projection

AY \ Age	1	2	3	4	5	6	7	8	9 = Ult
2000	10,238	24,654	38,025	46,550	52,842	58,722	65,227	67,604	69 <i>,</i> 559
2001	5,508	16,235	25,586	32,863	38,111	42,315	45,171	47,666	49,045
2002	7,374	20,620	34,220	43,438	50 <i>,</i> 898	55,475	58,367	60,943	62,706
2003	6,153	19,182	31,005	40,424	46,949	50,942	54,931	57 <i>,</i> 354	59,014
2004	7,253	25 <i>,</i> 066	40,134	51,063	58,376	64,144	69,166	72,218	74,307
2005	10,855	38 <i>,</i> 520	62,348	82,710	95,382	104,806	113,011	117,998	121,411
2006	10,313	34,341	51,110	65,632	75 <i>,</i> 688	83,166	89 <i>,</i> 677	93,634	96,343
2007	16,411	42,228	66,770	85,743	98 <i>,</i> 879	108,649	117,155	122,324	125,863
2008	21,234	63,281	100,059	128,491	148,177	162,818	175,564	183,311	188,614
All Yr Wtd	2.980	1.581	1.284	1.153	1.099	1.078	1.044	1.029	
Simple Avg	3.022	1.586	1.280	1.154	1.099	1.077	1.046	1.029	

- Chain ladder estimate of ultimate loss calculated by squaring the triangle rather than by vector multiplication of diagonal and LDFs
- Variance of chain ladder estimate will also be calculated by squaring
- Start by looking at first future diagonal

Visualization of age 1-2 development suggests the model $Y = bX + \sqrt{X}\sigma z$

- First term *bX* expresses expected value of linear relationship
 - Intercept in more general Y=a+bX does not appear necessary
- Second term $\sqrt{X\sigma z}$ expresses random deviations from expected
 - Form of *z* unspecified ("Distribution Free") but should be symmetric
 - Heteroscedasticity: higher value of $X \rightarrow$ higher variability of Y

- Because of square root, optimal value of b that minimizes the sum of squared residuals ("least squares") is 2.980
- Estimates of b and σ can be calculated by Excel's LINEST function

Remove heteroscedasticity inside LINEST with array version of SQRT

• Δ : Parameter risk = variability in estimate of expected value

TRINOSTICS LLC

• Γ : Process risk = variability due to all other factors not explained by X

Second development period: chained formulas for errors more complicated than for expected values

 $Y_{2008,2} = b_2 Y_{2008,1} + error$

- Errors are compounded when beginning value Y_1 is estimated
- Use LINEST to find b, s for second development period

{=LINEST(D2:D8/SQRT(C2:C8),SQRT(C2:C8),	
FALSE,TRUE)}	

- Error formulas
 - For 2007: same as before
 - For 2008: more formidable

 $\Delta(Y_2) = 5,475.36 \text{ sqrt}(Y_1^2 * \text{se}(b_2)^2 + b_2^2 * \Delta(Y_1)^2 + \text{se}(b_2)^2 * \Delta(Y_1)^2)$ $\Gamma(Y_2)$ 10.324.69 sqrt($Y_1 * s_2^2 + b_2^2 * \Gamma(Y_1)^2$) 11,686.69 sqrt($\Delta^2 + \Gamma^2$) $se(Y_2)$ total

Formulas relatively easy to copy cell to cell •

Error formulas for AY sum of unpaid loss are similar – refer to papers

AY 2008	AY \ Age	1	2	3	4	5	6	7	8	9 = Ult	
alone	2000	10,238	24,654	38,025	46,550	52,842	58,722	65,227	67,604	69,559	
	2001	5 <i>,</i> 508	16,235	25 <i>,</i> 586	32,863	38,111	42,315	45,171	47,666	49 <i>,</i> 045	
	2002	7,374	20,620	34,220	43,438	50,898	55,475	58,367	60,943	62,706	
Uses	2003	6,153	19,182	31,005	40,424	46,949	50,942	54,931	57,354	59,014	
"Y ₁ " =	2004	7,253	25,066	40,134	51,063	58,376	64,144	69,166	72,218	74,307	
-	2005	10,855	38,520	62,348	82,710	95,382	104,806	113,011	117,998	121,411	
42,228 +	2006	10,313	34,341	51,110	65 <i>,</i> 632	75,688	83,166	89,677	93,634	96,343	
63,281	2007	16,411	42,228	66,770	85,743	98,879	108,649	117,155	122,324	125,863	
and Δ , Γ	2008	21,234	63,281	100,059	128,491	148,177	162,818	175,564	183,311	188,614	
from	Sum of unpaid loss 63,281 _ 166,		166,829	279,866	418,125	523,583	619,504	707,782	777,301	pt. est.	
age 2 sum	= (42228+63				3281)*1.581					33,566	total ris
 Lognormal parameters (method of moments): 					Fitted Lognormal					Can	fit any
					100% 90%						fit any

 Use fitted distribution for risk inferences

Simple average link ratios are the optimal solution of a model with a different variance assumption

- Divide both sides by *X* to get OLS model with constant variance
- {=LINEST(C2:C9/B2:B9,B2:B9/B2:B9,FALSE,TRUE)}

Average-x-high-low link ratio is optimal solution of a model with a different variance assumption

• See eForum paper Bardis, Majidi, Murphy

TRINOSTICS LLC

other

Actuarial selection

Many selected link ratios – not necessarily all – can be optimal within this family of α -indexed models

- Given triangle data over a development period, reasonable link ratios can be viewed as LINEST solutions for some index α
- Use Excel's "What-If" analysis to generate above graph from your own triangle, "Goal Seek" to find α given your selection

Trinostics LLC is in the business of collaboration and education in the design and construction of transparently valuable actuarial models

Daniel Murphy, FCAS, MAAA dmurphy@trinostics.com

