## OLIVER WYMAN

Financial Services

## 16 November 2009

## Capital Allocation

CAS Annual Meeting

## GARY G. VENTER

Senior Advisor to Oliver Wyman
gary.venter@gmail.com

## Some Basics of Capital Allocation

- How to depends on why
- Will assume purpose is to measure riskadjusted return
- Purpose of that is:
- Decide on which business units to grow or shrink
- Set target profit levels - i.e., pricing risk
- Capital will be allocated in proportion to a risk measure
- Starts with Capital $=\mathrm{K}$ * Risk Measure
- E.g., Capital $=3 * \mathrm{TVaR}_{98}$ or Capital $=7 * \mathrm{TVaR}_{60}$ or Capital $=$ 6 * std
- Used to be $K=1$, but not necessary


## Proposed Answer

- Use distortion measures
- Basically risk measure is mean under transformed probabilities
- Capital is multiple of risk measure
- Allocation by such a risk measure and setting target returns equal across business units ends up pricing by mean of transformed probabilities
- That has some good properties as a pricing rule
- Pricing by other allocations is a back-door into risk pricing that often ignores basic pricing principles
- Like pricing for all the risk, not just the tail


## Pricing Theory 1 - CAPM

- Price for risk is proportional to covariance of risk with market
- Many problems with that including:
- If risk is not normally distributed, basic investor utility calls for using higher moments as well
- Empirical studies (Fama-French especially) find that other factors influence prices
- FF factors may be proxies for risk measures
- Two higher co-moments do as well as FF
- Using even more co-moments eliminates FF factor effect
- Jump risk probably influences prices in addition to moments
- Jumps make market incomplete and are systematic and not hedgeable
- But even super-CAPM taking all that into account would be wrong for insurance because ...


## In Insurance, Specific Risk Matters

- Opacity of accounting makes security analysts and investors sensitive to earnings fluctuations
- Impact on market price can be much greater than capital loss
- Cost of raising new capital can be high especially when it is needed - distressed firms - so losses from specific risk can be more expensive than market capital costs
- Policyholders tend to be not diversified in their insurance purchases so are adverse to all risk of the insurer
- Recent market turmoil illustrates that weakening financial position of insurer will force it to lower prices
- Empirical studies support these ideas


## Pricing Theory 2 - Arbitrage-Free Pricing

- Arbitrage = positive expected return with no risk of loss
- May exist for a short time but is quickly competed away
- Some so-called arbitrage actually has hidden risks
- In incomplete market same principle applies
- In complete market no-arbitrage uniquely determines prices
- In incomplete market no-arbitrage restricts but does not determine prices
- Either way, basic rule to be arbitrage-free is prices have to be means under equivalent transformed probabilities
- Equivalent = no positive probabilities transformed to zero or vice-versa
- Also transforms have to be on event probabilities, not on outcomes of deals - all deal prices have to use same probabilities for the underlying events


## Arbitrage-Free Pricing in Insurance

- Main implication is that prices have to be additive
- In effect, policyholders get the benefit of diversification
- Insurers still get fair price for risk they take on
- If pricing does not give diversification benefit to policyholders, insurer will eventually lose that business to competitors
- Advantage of diversification is to improve competitive position
- Suppose not, e.g., suppose insurer can charge prediversification prices, pool risk, and cede 100\% to a reinsurer at a lower price
- That would be an arbitrage profit
- Not likely in competitive insurance market
- Pricing then through equivalent probability transforms
- Transform probabilities of firm simulations and lines inherit
- Transform does not change losses, just probabilities of losses
- Unfortunately still have to decide among transforms
- Gives target price based on firm risk, to judge market prices


## Some Transforms That Have Worked in Market

- Esscher transform:
- Parameter $w$, with $c=\mathrm{G}^{-1}(1-1 / \mathrm{w})$
- $g^{*}(y)=K g(y) \exp (y / c), K=1 / E[\exp (Y / c)]$
- Doesn't always exist but will if there is a maximum loss
- Wang transform, original normal
- $G^{*}(y)=\Phi\left[\Phi^{-1}(G(y))+\lambda\right]$
- Probability transform from shifting normal percentile by $\lambda$
- $\lambda$ may be positive or negative depending on losses vs. profit, etc.
- In simulation get $\mathrm{g}^{*}$ by differencing $\mathrm{G}^{*}$
- Wang transform with T distribution q dof
- $\mathrm{G}^{*}(\mathrm{y})=\mathrm{T}_{\mathrm{q}}\left[\Phi^{-1}(\mathrm{G}(\mathrm{y}))+\lambda\right]$
- Puts more weight in tail
- Unfortunately in both tails
- Empirical studies on bonds, cat bonds, cat reinsurance give support to Esscher and Wang $\mathrm{T}_{5}$


| Simulated Company - 1000 Simulations |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\log N \mathrm{Mu}$ | 13.796 | 13.691 | 13.316 |  |  |
| Log N Sigma ( $\sim$ CV) | 20.0\% | 50.0\% | 100.0\% |  |  |
| Actual CV | 20.2\% | 53.3\% | 131.1\% |  |  |
| Skew | 61.4\% | 175.0\% | 618.5\% |  |  |
| Expected Loss | 1,000,000 | 1,000,000 | 1,000,000 | 3,000,0 |  |
| Simulated | 1,009,960 | 992,037 | 988,584 | 2,990,5 |  |
| Correlation with Total | 17\% | 34\% | 91\% | 100 |  |
| Capital $=18,000,000$ 2.5 TVaR $95 \sim 3$ TVaR $_{90}$ |  |  |  |  |  |
| Target underwriting profit $=10 \%$ of capital $=1,800,000$ |  |  |  |  |  |
| After tax this is maybe $6.5 \%$ and investment income taxed down to be in insurance company, so maybe reasonable |  |  |  |  |  |
| Agg mean 2,990,581 |  |  |  |  |  |
| Stdev 1,358,875 |  |  |  |  |  |
| CV 45.4\% |  |  |  |  |  |
| Skew 318.9\% |  |  |  |  |  |
| Skew if lognormal 145.7\% |  |  |  |  |  |
|  |  |  |  | Documentumber | 9 |



## Applying Transforms

- Each has a free parameter
- Find parameter value that makes transformed mean = mean + target profit
- Original probability of each scenario $=0.001=1 / 1000$
- Esscher probability:
- $w=3.57, c=3,281,072, \mathrm{~K}=1 / \mathrm{E}[\exp (\mathrm{Y} / \mathrm{c})]=1 / 2.968$
- $g^{*}(y)=\operatorname{Kexp}(y / c) / 1000$
- Normal Wang, set scenario probability $=1 / 1001$ so cumulative probability < 1
- $\lambda=-1.03005, \mathrm{G}^{*}(\mathrm{y})=\Phi\left[\Phi^{-1}(\mathrm{G}(\mathrm{y}))+\lambda\right]$
- $\mathrm{G}^{*}(1000 / 1001)=0.9803, \mathrm{~g}^{*}($ largest scenario $)=1-0.9803=$ 0.0197
- $\mathrm{G}^{*}(999 / 1001)=0.9677, \mathrm{~g}^{*}\left(2^{\text {nd }}\right.$ largest $)=0.9803-0.9677=$ 0.0126

Resulting Probabilities


## Allocation and Load

| Capital | Total | LOB 1 | LOB 2 | LOB 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 18,000,000 | 278,954 | 307,078 | 17,413,968 | Esscher |
|  | 18,000,000 | 304,445 | 1,299,012 | 16,396,543 | Wang T5 |
|  | 18,000,000 | 390,663 | 1,892,154 | 15,717,183 | Wang Normal |
| Expected profit | 1,800,000 | 27,895 | 30,708 | 1,741,397 | Esscher |
|  | 1,800,000 | 30,444 | 129,901 | 1,639,654 | Wang T5 |
|  | 1,800,000 | 39,066 | 189,215 | 1,571,718 | Wang Normal |
| Price | 4,790,581 | 1,037,856 | 1,022,745 | 2,729,980 | Esscher |
|  | 4,790,581 | 1,040,405 | 1,121,939 | 2,628,238 | Wang T5 |
|  | 4,790,581 | 1,049,026 | 1,181,253 | 2,560,302 | Wang Normal |
| Load | 60.2\% | 2.8\% | 3.1\% | 176.2\% | Esscher |
|  | 60.2\% | 3.0\% | 13.1\% | 165.9\% | Wang T5 |
|  | 60.2\% | 3.9\% | 19.1\% | 159.0\% | Wang Normal |

