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Introduction

A loss reserving model from a upper triangle (training data), one is 
interested in whether it is a good or bad predictive distribution.

Standard error is commonly used measure of variability, does a 
small standard error mean a good predictive model?

Hold-out observations are needed to answer the above question.

For a run-off triangle of incremental paid losses, suppose we 
observe all the losses in the lower triangle (hold-out sample), the 
retrospective test in this study is based on the following well-know 
result:
If X is a random variable with distribution F, then the transformation 
F(X) follows a uniform distribution on (0,1).



X : total reserve
- Use a sample of independent insurers.
- Test whether the percentiles of total reserves are from uniform (0,1).
- Informs us whether a predictive model is good for the whole 
industry.

X : incremental paid losses in each cell of the lower triangle
- Test for each single insurer.
- Test whether the percentiles of incremental losses in the lower
triangle (hold-out sample) are from uniform (0,1)
- Informs us whether a predictive model performs well for a particular 
insurer

Introduction

Loss reserving methods

Three methods are considered: Mack chain ladder, bootstrap over-
dispersed Poisson, Bayesian log-normal

An industry benchmark: Chain-Ladder technique
- Large literature on CL, see England and Verrall (2002), Wüthrich and Merz (2008)  
- Many stochastic models reproduce CL estimates, e.g. Mack (1993,1999), Renshaw
and Verrall (1998), Verrall (2000)
- Modifications of CL, e.g. Barnnett and Zehnwirth (2000)

Mack CL: 
- Variability can be from recursive relationship, see Mack (1999)
- Assume normality in the calculation of percentiles

Bootstrap ODP:
- Resample residuals of GLM
- Fit CL to pseudo data
- Simulate incremental loss for each cell

A Bayesian Log-normal Model

Previous studies: Alba (2002,2006), Ntzoufras and Dellaportas
(2002)
Calendar year effect has been ignored
We propose

We use accident year premium as exposure variable
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A Bayesian Log-normal Model

Different ways to specify calendar year trend

Calendar year trend introduce correlation due to calendar year 
effects
The state space specification could be used on accident year or 
development year trend
We focus on AR and RW specifications in the following analysis
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A Bayesian Log-normal Model

The likelihood function can be derived as follows

We perform the analysis using WinBUGS
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Sampling of NAIC Schedule P

Training data is from 1997 schedule P
Accident year 1988 – 1997
Hold-out sample is from schedule P of subsequent years
e.g. actual paid losses for AY 1989 is from 1998 schedule P

actual paid losses for AY 1990 is from 1999 schedule P
……
actual paid losses for AY 1997 is from 2006 schedule P

Limit to group insurers or single entities
Use data for personal auto and commercial auto for our analysis
Check overlapping periods in training data and hold-out sample
e.g. 

Training 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

AY 1989

Hold-out 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

AY 1989

Analysis for the industry

Consider largest 50 insurers for personal and commercial auto lines
Use net premiums written to measure size
For each line of business:
- derive the predictive distribution of total reserves for insurer i, say Fi

- calculate the percentile of the actual losses pi = Fi (lossi)
- repeat for all 50 firms
Test if pi follows uniform (0,1)
Implications:
- if a predictive model performs well, percentiles should be a 
realization from uniform (0,1)
- an outcome that falls on the lower or higher percentile of the 
distribution does not suggest a bad model

Commercial Auto

• Consider Mack CL and bootstrap ODP for top 50 insurers
• Compare point estimate of total reserve and prediction error
• 1st figure compares point prediction that confirms two methods provide 

same estimates
• 2nd figure compares percentiles of actual losses, indicating a similar 

predictive distribution 



Commercial Auto

Next two slides present the percentiles pi (i = 1,…,50) of total 
reserves for the 50 insurers under different loss reserving methods
Histogram and uniform pp-plot are produced for four methods
K-S test is used to test if pi follows uniform
We observe:
- again Mack CL and bootstrap ODP provides similar results
- pp-plots show both might have overfitting problem
- among state space modeling, AR1 specification performs better 
with   a high p-value in the K-S test

• Mack CL

• Bootstrap ODP

• LN - RW

• LN – AR: p-value of K-S test is 0.43



Personal Auto

• Repeat above analysis of total reserves for personal auto
• First we consider Mack CL and bootstrap ODP using data from largest 

50 insurers
• Comparison of point prediction and percentile of actual losses 

confirms the close results from the two chain ladder models

Personal Auto

As done for commercial auto, next two slides present the 
percentiles pi (i = 1,…,50) of total reserves for the 50 insurers under 
different loss reserving methods
We exhibit both histogram and uniform pp-plot, and K-S test is 
used to test if pi follows uniform
We observe:
- again Mack CL and bootstrap ODP provides similar results
- the performance if worse than the commercial auto, since most 
realized outcomes lie on the lower percentile of the predictive 
distribution
- Log-normal model does not suffer like the above two, and a high 
p-value of the K-S test suggests the good performance of the AR1 
specification

• Mack CL

• Bootstrap ODP



• LN - RW

• LN – AR: p-value of K-S test is 0.12

Analysis for individual insurers

Consider individual insurers
For illustrative purposes, we pick out 2 insurers for each line
Compare ODP and LN-AR model
Out of the two individual insurers for each line, we show that ODP 
is better for one firm and LN model is better for the other one
Though the analysis, we hope to explain why a certain method 
outperforms the other one

Commercial Auto – Insurer A

• For insurer A, we derive the predictive distribution for each cell in the 
lower part of the triangle 

• Then calculate the percentiles for actual incremental paid losses in the 
hold-out sample

• Uniform pp-plots of percentiles with the p-value of K-S tests are 
shown in next slide

• LN model outperforms ODP slightly
• We also compare mean error and mean absolute percentage error of the 

two methods over the 9 testing periods
• The result, to a great extent, agrees with K-S test



Commercial Auto – Insurer A

Commercial Auto – Insurer A

• In the next two slides, we analyze the predictive distributions from the 
two methods

• 1st slide shows the predictive distributions for calendar year reserves
- for early calendar years, LN provides wider distribution, as one 

moves to the bottom right of the lower triangle, LN provides narrow 
distribution
- recall calendar year reserve is the sum of losses from cells in the 
same diagonal

• 2nd slide shows the predictive distribution of each cell in calendar year 
CY=2, that is calendar year 1998
- for top right cells on the diagonal, LN provides narrower distribution, 
and for bottom left cells, LN provides wider distribution
- LN provides higher volatility for early development year 

Predictive distribution for calendar year reserves



Predictive distribution for each cell of first calendar year 

Commercial Auto – Insurer A
We look into the pattern of the training data
We show time-series plot of incremental losses for each accident 
year and over development lag
Left panel shows losses and right panel shows loss ratio
We observe high volatility in early development lag that might 
explain the better performance of LN model

Commercial Auto – Insurer B
We did similar analysis for insurer B and the results are 
summarized in the following three slides
For insurer B, ODP outperforms LN model slightly
Again we observe that the wider predictive distribution for early 
calendar years from LN model is explained by the wider distribution 
for early development year



Commercial Auto – Insurer B

Predictive distribution for calendar year reserves

Predictive distribution for each cell of first calendar year 



Figures below show time-series plot of incremental losses for each 
accident year and over development lag
Left panel shows losses and right panel shows loss ratio
Different with insurer A, there is less volatility in early development 
years
LN model might “underfit” the data

Commercial Auto – Insurer B

Personal Auto – Insurer A

• For insurer A, we derive the predictive distribution for each cell in the 
lower part of the triangle 

• Then calculate the percentiles for actual incremental paid losses in the 
hold-out sample

• Uniform pp-plots of percentiles with the p-value of K-S tests are 
shown in next slide

• LN model outperforms ODP
• We also compare mean error and mean absolute percentage error of the 

two methods over the 9 testing periods
• For each testing period, LN performs better than ODP

Personal Auto – Insurer A



Personal Auto – Insurer A

• In the next two slides, we analyze the predictive distributions from the 
two methods

• 1st slide shows the predictive distributions for cells with development 
year 10
- the predictive distribution for all accident year are similar
- LN provides narrower distributions

• 2nd slide shows the predictive distribution for cells in accident year 
1997 
- we want to see the effects over development lags
- LN provides wider distribution for early development years and 
narrower distribution for later development years

Predictive distributions for cells with development year 10

Predictive distributions for cells with accident year 1997



Again look into the pattern of the training data
We show time-series plot of incremental losses for each accident 
year and over development lag
Left panel shows losses and right panel shows loss ratio
Again the high volatility in early development lag that might explain 
the better performance of LN model

Personal Auto – Insurer A

Personal Auto – Insurer B
We did similar analysis for insurer B and the results are 
summarized in the following three slides
For insurer B, ODP outperforms LN model
From the predictive distributions, we observe again LN provides 
wider distributions for early development years, while the 
distributions across accident years are similar under two methods

Personal Auto – Insurer B



Predictive distributions for cells with development year 10

Predictive distributions for cells with accident year 1997

Figures below show time-series plot of incremental losses for each 
accident year and over development lag
Left panel shows losses and right panel shows loss ratio
Different with insurer A, there is less volatility in early development 
years, especially for the loss ratio
Thus LN model introduces more volatility and does not work well 
for this insurer

Personal Auto – Insurer B



Concluding Remarks

We use simple test to examine the performance of loss reserving 
methods
Our analysis is based on hold-out sample
We find the current industry standard over-estimate reserves for 
the industry
We compare chain ladder and LN model on individual insurers
Chain ladder fails in case of higher volatility 
Bayesian methods mitigates the potential overfitting problem


