Prediction Error of the Future Claims Component of Premium Liabilities under the Loss Ratio Approach

(accepted to be published in Variance)

CAS Annual Meeting November 8, 2010

Jackie Li PhD, FIAA Nanyang Business School Nanyang Technological University, Singapore

International Regulatory Changes

- International Accounting Standards Board (IASB) proposed that both outstanding claims liabilities and premium liabilities should be assessed at their 'fair values'
- it is generally perceived that : fair value = mean + margin
- this margin allows for different types of variability for insurance liabilities

Australian Regulatory Changes

- Australian Prudential Standard GPS 310 stipulates that insurance liabilities must be valued at 75th percentile
- risk margin = 75th percentile mean
- risk margin is subject to a minimum of one half of standard deviation
- risk margin is usually expressed as a percentage of mean

- bootstrapping, stochastic chain ladder, Mack model, Bayesian Markov chain Monte Carlo (MCMC) simulation
- produce both mean and variability
- so far, studies focus mainly on process error and estimation error
- extensive literature on outstanding claims liabilities but relatively few on premium liabilities

Premium Liabilities

- refer to all future claim payments and associated expenses arising from future events after valuation date
- insured under existing unexpired policies
- account for 30% of insurance liabilities for direct insurers and 15-20% for reinsurers in Australia from 2002 to 2004 (Yan 2005)

Premium Liability Assessment

- **prospective** method : full actuarial assessment from first principles
- retrospective method : adjustment of unearned premiums ; Canadian and Australian accounting standards require addition of premium deficiency reserve if this is smaller than full actuarial assessment

Prospective Method

 historical claims approach : number of claims and average claim size ; for short-tailed lines with much data ; studied thoroughly under risk theory

 loss ratio approach : most common in practice ; an extension of outstanding claims liability

valuation ;

applies loss ratios to unearned premiums ; receives relatively little attention

Research Objectives

- prospective method
- loss ratio approach
- future claims component
- weighted / simple average loss ratio
- standard error of prediction
- process error and estimation error

Notation & Assumptions

- assume all claims are settled in *n* years
- C_{*ij*} is cumulative claim amount of accident year *i* and development year *j*
- valuation date is as at end of accident year *n*
- $C_{i,j}$ data is available for $i + j \le n + 1$
- $C_{i,j}$ for i + j > n + 1 and $1 \le i \le n$ refers to outstanding claims liabilities
- $C_{n+1,j}$ refers to premium liabilities
- E_i for $1 \le i \le n + 1$ is known premiums of accident year *i*
- C_{i,n} / E_i is ultimate loss ratio of accident year i

- assume exposure is evenly distributed over each year
- assume exposure distribution of accident year n + 1 is the same as past accident years

- starting from chain ladder structure
- f_j and σ_j² are estimated from claims data
 u and v² are estimated from claims and premiums data
- unbiased estimators

Loss Ratio Estimator

- expected ultimate loss ratio of accident year n + 1 is q = E(C_{n+1,n} / E_{n+1})
- weighted average estimator :

$$\hat{q} = \frac{\sum_{i=1}^{n} C_{i,n+1-i} \hat{f}_{n+1-i} \hat{f}_{n+2-i} ... \hat{f}_{n-1}}{\sum_{i=1}^{n} E_{i}}$$

• simple average estimator :

$$\hat{q}^* = \frac{1}{n} \sum_{i=1}^n \frac{C_{i,n+1-i} \hat{f}_{n+1-i} \hat{f}_{n+2-i} \dots \hat{f}_{n-1}}{E_i}$$

• these two estimators are unbiased

Prediction Error • mean square error of prediction : $MSEP(\hat{q}) = E\left[\left(\frac{C_{n+1,n}}{E_{n+1}} - \hat{q}\right)^{2}\right] = Var\left(\frac{C_{n+1,n}}{E_{n+1}}\right) + Var(\hat{q})$ i.e. process error + estimation error • process error is related to future only • estimation error is related to past only • standard error of prediction :

 $\text{SEP}(\hat{q}) = \sqrt{\text{MSEP}(\hat{q})}$

	Australian Public Liability (Net)											
K	Nj	1	2	3	4	5	6	7	8	9	10	Premiums
1	1981	13,451	16,801	12,947	13,752	13,802	8,583	6,847	9,237	5,641	3,784	168,975
	1982	13,533	17,489	13,111	13,541	13,603	11,937	10,524	8,609	5,987		186,990
	1983	11,808	17,525	12,644	15,609	11,821	17,305	10,524	11,061			200,475
	1984	13,309	17,806	14,777	17,295	15,340	12,060	11,752				222,843
	1985	19,546	22,786	19,686	21,860	19,268	18,692					262,748
	1986	17,865	25,888	28,194	25,578	22,985			Outst	anding		333,716
	1987	17,797	33,517	24,182	24,337				Cla	ims		410,429
	1988	24,591	33,398	28,512					Liabi	lities		502,869
	1989	21,567	46,146									532,298
	1990	30,343										545,218
	Premium Liabilities											234,659

Results

- expected ultimate loss ratio of accident year 1991 :
- 49.2% (gross) 53.6% (net)
- standard error of prediction (% of mean) :

47.1% (gross) 33.1% (net)

gross liability variability
 > net liability variability

Concluding Remarks

- starting point for assessing premium liability variability
- insurance cycle, claims at tail, catastrophes, superimposed inflation, multi-year policies, expenses, recoveries, reinsurance, retrospectively rated polices, unclosed business, refund claims, claims management, underwriting

Current Research Projects

- regression-like estimators
- coherent modeling of two or more lines of business
- over-dispersed Poisson (ODP) and gamma models
- Bayesian analysis and Markov chain Monte Carlo (MCMC) simulation

References

- Mack, T., "Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimates," ASTIN Bulletin 23(2), 1993, pp. 213-225.
- Schnieper, R., "Separating True IBNR and IBNER Claims," ASTIN Bulletin 21(1), 1991, pp. 111-127.
- Yan, M., "Premium Liabilities," The Institute of Actuaries of Australia XVth General Insurance Seminar, 2005.