

Why use a continuous curve?

- 1. Smoothing of Development Pattern
- 2. Interpolation & Extrapolation (including tail factor)
- 3. Handle irregular evaluation dates (e.g., latest diagonal less than 12 months from penultimate diagonal)
- 4. Avoid Over-Parameterization

Disadvantages of using a continuous curve:

- 1. Need curve-fitting engine (answers not in "real time")
- 2. May not fit well unless the "right" curve form is used

Munich RE

Basic Model:

- 1. Convert loss development triangle to an incremental basis
- 2. For each "cell" of the triangle, we have

 $c_{i,t} = actual loss for AY i, between ages t and t-1$

 $\mu_{i,t} = \underline{\text{expected}}$ loss for AY *i*, between ages *t* and *t*-1

LDF Curve-Fitting and Stochastic Reserving

Two Methods for calculating the Expected Incremental Loss:

1. LDF

Allows each accident year reserve to be estimated independently

2. Cape Cod

Requires on level premium or other exposure base for each accident year

An on level Premium, entry for each accident year must be supplied by the user

LDF Curve-Fitting and Stochastic Reserving

Why We Prefer the Cape Cod Method:

- Provides the model with more information (an exposure base in addition to the triangle)
- Requires estimation of fewer parameters resulting in lower parameter variance
- More stable estimate of immature year(s)

And now for the Stochastic part...

Munich RE

Assumptions:

- The expected development in each cell, μ_{i,t} is treated as the mean of a distribution.
- Each cell has a different mean, but assumed to have the same ratio of Variance/Mean, σ².
- The distribution for each cell follows an *Over-dispersed Poisson* with a constant Variance/Mean ratio.
- The model parameters are estimated using <u>Maximum Likelihood</u> <u>E</u>stimation (MLE).

LDF Curve-Fitting and Stochastic Reserving

What the heck is an Over-dispersed Poisson distribution?

A discretized version of the aggregate loss amount, with the same shape as a standard Poisson - commonly used in Generalized Linear Models (GLM).

Munich RE

LDF Curve-Fitting and Stochastic Reserving

Maximizing the Likelihood means solving for θ and ω that maximize the expression:

 $\sum_{i,t} c_{i,t} \cdot \ln(\hat{\mu}_{i,t}) - \hat{\mu}_{i,t}$

Note this is actually a "quasi-likelihood" – not including the dispersion parameter σ .

LDF Curve-Fitting and Stochastic Reserving

The Variance/Mean Ratio, σ^2 , is estimated by:

$$\sigma^2 \approx \frac{1}{n-p} \cdot \sum_{i,t} \frac{\left(c_{i,t} - \hat{\mu}_{i,t}\right)^2}{\hat{\mu}_{i,t}}$$

Why use <u>Maximum Likelihood Estimation (MLE)?</u>

1. Familiar methods (LDF and Cape Cod) are exact MLE results

Munich RE 3

2. MLE provides estimate of the uncertainty in the parameters ("delta method" in Loss Models)

LDF Curve-Fitting and Stochastic Reserving

We begin with sample triangle from Taylor – Ashe:

Accident										
Year	12	24	36	48	60	72	84	96	108	120
1997	357,848	1,124,788	1,735,330	2,182,708	2,745,596	3,319,994	3,466,336	3,606,286	3,833,515	3,901,463
1998	352,118	1,236,139	2,170,033	3,353,322	3,799,067	4,120,063	4,647,867	4,914,039	5,339,085	
1999	290,507	1,292,306	2,218,525	3,235,179	3,985,995	4,132,918	4,628,910	4,909,315		
2000	310,608	1,418,858	2,195,047	3,757,447	4,029,929	4,381,982	4,588,268			
2001	443,160	1,136,350	2,128,333	2,897,821	3,402,672	3,873,311				
2002	396,132	1,333,217	2,180,715	2,985,752	3,691,712					
2003	440,832	1,288,463	2,419,861	3,483,130						
2004	359,480	1,421,128	2,864,498							
2005	376,686	1,363,294								
2006	344,014									

LDF Curve-Fitting and Stochastic Reserving

	Tobular E	ormat a	f Develop	mont Det	•			C ~!	oulated E	ioldo	
		ormat o	Develop	nent Dat	a	_		Cal	culated F	leius	
Year	Starting	Ending	Increment	Diagonal	Latest		Starting	Ending	Diagonal	Fitted	Likelihoo
1997	0	12	357,848	120	3,901,463		0.00%	4.74%	77.24%	239,295	4,192,81
1997	12	24	766,940	120	3,901,463		4.74%	19.38%	77.24%	739.686	9,624,72
1997	24	36	610,542	120	3,901,463		19.38%	33.34%	77.24%	705,171	7,516,50
1997	36	48	447,378	120	3,901,463		33.34%	44.77%	77.24%	576,987	5,357,73
1997	48	60	562,888	120	3,901,463		44.77%	53.75%	77.24%	453,829	6.878.05
1997	60	72	574,398	120	3,901,463		53.75%	60.78%	77.24%	355,106	6,985,79
1997	72	84	146,342	120	3,901,463		60.78%	66.32%	77.24%	279,911	1,555,54
1997	84	96	139,950	120	3,901,463		66.32%	70.75%	77.24%	223,278	1,500,37
1997	96	108	227,229	120	3,901,463		70.75%	74.32%	77.24%	180,455	2,569,75
1997	108	120	67,948	120	3,901,463		74.32%	77.24%	77.24%	147,745	661.05
1998	0	12	352,118	108	5,339,085		0.00%	4.74%	74.32%	340,360	4,144,83
1998	12	24	884,021	108	5,339,085		4.74%	19.38%	74.32%	1,052,089	11,206,00
1998	24	36	933,894	108	5,339,085		19.38%	33.34%	74.32%	1,002,997	11,902,02
1998	36	48	1,183,289	108	5,339,085		33.34%	44.77%	74.32%	820,675	15,293,21
1998	48	60	445,745	108	5,339,085		44.77%	53.75%	74.32%	645,502	5,317,57
1998	60	72	320,996	108	5,339,085		53.75%	60.78%	74.32%	505,083	3,710,39
1998	72	84	527,804	108	5,339,085		60.78%	66.32%	74.32%	398,130	6,407,65
1998	84	96	266,172	108	5,339,085		66.32%	70.75%	74.32%	317,579	3,054,41
1998	96	108	425,046	108	5,339,085		70.75%	74.32%	74.32%	256,669	5,037,51
1999	0	12	290,507	96	4,909,315		0.00%	4.74%	70.75%	328,768	3,361,57
1999	12	24	1,001,799	96	4,909,315		4.74%	19.38%	70.75%	1,016,256	12,840,26
1999	24	36	926,219	96	4,909,315		19.38%	33.34%	70.75%	968,836	11,798,02
1999	36	48	1,016,654	96	4,909,315		33.34%	44.77%	70.75%	792,724	13,016,72
1999	48	60	750,816	96	4,909,315		44.77%	53.75%	70.75%	623,517	9,394,71
1999	60	72	146,923	96	4,909,315		53.75%	60.78%	70.75%	487,880	1,436,49
1999	72	84	495,992	96	4,909,315		60.78%	66.32%	70.75%	384,571	5,993,82
1999	84	96	280,405	96	4,909,315		66.32%	70.75%	70.75%	306,762	3,235,82
2000	0	12	310,608	84	4 588 268		0.00%	4 74%	66.32%	327,747	3 616 97

Munich RE 🗐

LDF Curve-Fitting and Stochastic Reserving

Munich RE 🗐

LDF Curve-Fitting and Stochastic Reserving

					From LDF	Method
Accident	Age in	Actual		Estimated	Process	Parameter
Year	Months	Losses	LDF	<u>Ultimate</u>	Std Dev	Std Dev
1997	120	3,901,463	1.2236	4,773,973	238,199	221,376
1998	108	5,339,085	1.2718	6,790,240	307,193	346,324
1999	96	4,909,315	1.3360	6,558,973	327,530	386,159
2000	84	4,588,268	1.4251	6,538,617	356,132	445,399
2001	72	3,873,311	1.5550	6,023,009	373,890	484,507
2002	60	3,691,712	1.7584	6,491,469	426,692	608,202
2003	48	3,483,130	2.1113	7,353,978	501,716	805,536
2004	36	2,864,498	2.8346	8,119,835	584,595	1,076,711
2005	24	1,363,294	4.8765	6,648,066	586,230	1,315,783
2006	12	344,014	19.9502	6,863,141	651,102	2,968,453
All Years T	otal:	34,358,090		66,161,301	1,438,103	5,373,718

Note: Process Std Dev numbers by year corrected from presentation

LDF Curve-Fitting and Stochastic Reserving

							From Cape Cod	
Accident	Age in				Actual	Estimated	Process	Parameter
Year	Months	Premium	LDF	Prem/LDF	Losses	Ultimate	Std Dev	Std Dev
1997	120	10,000,000	1.2185	8,207,064	3,901,463	5,663,496	250,054	224,953
1998	108	10,400,000	1.2658	8,216,084	5,339,085	5,890,036	275,975	260,609
1999	96	10,800,000	1.3291	8,126,099	4,909,315	6,116,576	305,368	300,400
2000	84	11,200,000	1.4169	7,904,647	4,588,268	6,343,116	339,002	343,886
2001	72	11,600,000	1.5453	7,506,539	3,873,311	6,569,655	377,830	389,688
2002	60	12,000,000	1.7469	6,869,474	3,691,712	6,796,195	422,992	434,769
2003	48	12,400,000	2.0976	5,911,393	3,483,130	7,022,735	475,693	473,606
2004	36	12,800,000	2.8195	4,539,850	2,864,498	7,249,275	536,717	498,388
2005	24	13,200,000	4.8691	2,710,974	1,363,294	7,475,815	604,810	504,489
2006	12	13,600,000	20.1857	673,743	344,014	7,702,355	671,410	511,512
All Years Total:		118,000,000		60,665,868	34,358,090	66,829,253	1,414,028	3,879,758
						LDF Std Dev:	1,438,103	5,373,718

© Copyright 2011 Munich Reinsurance America, Inc. All rights reserved. "Munich Re" and the Munich Re logo are internationally protected registered trademarks. The material in this presentation is provided for your information only, and is not permitted to be further distributed without the express written permission of Munich Reinsurance America, Inc. or Munich Re. This material is not intended to be legal, underwriting, financial, or any other type of professional advice. Examples given are for illustrative purposes only. Each reader should consult an attorney and other appropriate advisors to determine the applicability of any particular contract language to the reader's specific circumstances.

