Pricing in a Competitive Insurance

Market Driven by Fractional Noise

Prof. Alexandros A. Zimbidis

Athens University

of Economics and Business

Pricing Process – No market concerns

constant safety loading

Traditional premium calculation

Expected Claims Safety loading

Dynamic premium calculation

Lundberg(1903) - Cramer(1930) - Borch (1967)

Variable (& controllable) safety loading

 $F(t) = F(0) + \int_{0}^{t} (1 + \theta(s)) p \, ds - S(t)$

2

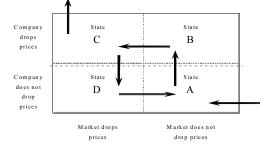
3

4

Pricing process - Competitive Market

Market premium calculation Taylor (1986) and Emms, Haberman & Savoulli (2007) Variable (& controllable) safety loading plus Market concerns $dF(t) = \delta(t)F(t)dt + [p(t) - c(t)]dV(t)$ The level of the safety loading and consequently the level of premium determines the volume of business

The payoff matrix of a competitive insurance market



Model Equations for the Insurance Company

$$dF(t) = \delta(t)F(t)dt + [p(t) - c(t)]dV(t)$$

V(t): is the volume of business at time t (input variable)

p(t): is the premium rate of the company at time t (controlled variable)

- F(t): is the reserve value at time t (state variable) , $F(0)=F_0$
- $\delta(t)$: is the force of interest earned by the fund at time t
- c(t): is the total cost per policy (claims plus expenses and profit margin) at time t.

$$\min_{p(t)} \mathbf{E} \left[g\left(p(t), F(T) \right) \right] = \min_{p(t)} \mathbf{E} \left[F(T) - F_0 \right]^2$$

5

Modelling the Volume of Business

$$V(t) = f(p(t), \overline{p}(t), \psi(t))$$

- p(t) is the premium rate of the company,
- $\overline{p}(t)$ is the market's average premium rate and
- $\tilde{\psi(t)}$ is a vector of different parameters (e.g., money spent in the advertisement campaign of the company)

$$\lim_{p(t)\to\infty}f(p(t),\overline{p}(t),\psi(t))=0$$

$$\lim_{p(t)\to 0} f(p(t), \overline{p}(t), \psi(t)) = E$$

E corresponds to the total market

6

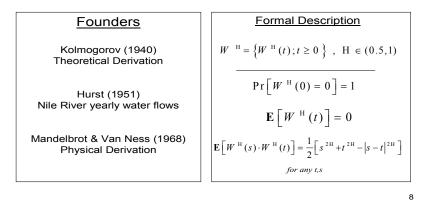
7

Modelling the market's average premium rate

$$d\overline{p}(t) = \mu dt + \sigma dW^{H}(t)$$

- μ is the average claim rate (drift),
- σ is the volatility of the claim process
- $W^{H}(t)$ is a fractional Brownian motion

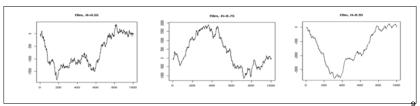
<u>Fractional Brownian Motion</u> <u>Basic Theory - (1)</u>



Fractional Brownian Motion Basic Theory - (2)

Gaussian process - self-similar - stationary increments exhibiting long-range dependency

<u>Pictures</u>



Fractional Brownian Motion Basic Theory - (3)

Estimation of the Hurst exponent

Given the data of a time series, the Hurst exponent may be regarded as a measure of smoothness and is defined as

$$H = \frac{\ln(R/S)}{\ln(T)}$$

- R is the respective range,
- ${\cal S}_{-}$ is the standard deviation and
- $T_{}$ is the duration of the sample data.

Regarding the procedure for the estimation of the Hurst exponent, see the algorithm described in Zimbidis (2011)

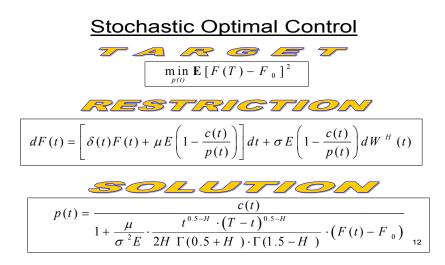
Fractional Brownian Motion Evidence

Greek motor insurance market

- A quite strange example within the European area
- Exhibits a low premium rate for MTPL (Motor Third-Party Liability), while the road deaths rates are among the highest within Europe.
- The tariff system for MTPL has been controlled by the government up to the end of 1996.

■ Investigation period 1998-2006. The Hurst index is similar for each line of business, and always greater than the critical value 0.5 and near 0.6, supporting the evidence for long-range dependency

(see Zimbidis (2011))



Limiting Behavior of the Solution IF THEN a) $F(t) \rightarrow \infty$ $p(t) \rightarrow 0$ b) $F(t) \rightarrow F_0$ $p(t) \rightarrow c(t)$ $\frac{\mu}{\sigma^2 E} \cdot \frac{t^{0.5-H} \cdot (T-t)^{0.5-H}}{2H \ \Gamma(0.5+H) \cdot \Gamma(1.5-H)} < \frac{1}{F_0}$ $p\left(t\right) \rightarrow \infty$ c) $F(t) \rightarrow 0$ and d) $t \rightarrow 0 \ or \ T$ $p(t) \rightarrow c(t)$ $\frac{t^{_{0.5-H}} \cdot (T-t)^{_{0.5-H}}}{2H \ \Gamma \left(0.5+H\right) \cdot \Gamma \left(1.5-H\right)} \equiv 1 \quad \text{and} \quad \frac{\mu}{\sigma^{^{2}} E} \cong \frac{1}{F_{_{0}}} \ or \ F_{_{0}} \cong E \cdot \frac{\sigma^{^{2}}}{\mu}$ $p(t) \cong \frac{F_0}{F(t)}c(t)$ e)

13

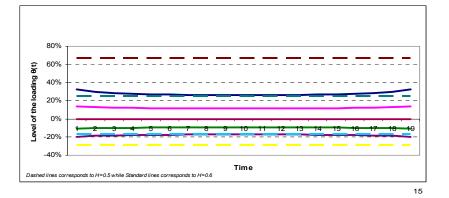
11

Calculation of the Safety Loading

H=0.5	Solvency Ratio = $F(t) / F(0)$				
	60%	80%	100%	120%	140%
t					
1 -19	67%	25%	0%	-17%	-29%
	1				
H=0.6	Solvency Ratio = $F(t) / F(0)$				
	60%	80%	100%	120%	140%
t				r	r
1	32%	14%	0%	-11%	-20%
2	30%	13%	0%	-10%	-19%
3	28%	12%	0%	-10%	-18%
4	28%	12%	0%	-10%	-18%
5	27%	12%	0%	-10%	-18%
6	27%	12%	0%	-10%	-17%
7	26%	12%	0%	-9%	-17%
8	26%	12%	0%	-9%	-17%
9	26%	12%	0%	-9%	-17%
10	26%	12%	0%	-9%	-17%
11	26%	12%	0%	-9%	-17%
12	26%	12%	0%	-9%	-17%
13	26%	12%	0%	-9%	-17%
14	27%	12%	0%	-10%	-17%
15	27%	12%	0%	-10%	-18%
16	28%	12%	0%	-10%	-18%
17	28%	12%	0%	-10%	-18%
18	30%	13%	0%	-10%	-19%
19	32%	14%	0%	-11%	-20%

14

Time Development of the Safety Loading



Final Remarks

- empirical evidence found within the data of the Greek motor insurance market
- fractional Brownian motion as the modeling tool for the driving force of the market's behavior
- the optimal premium control strategy differs considerably from the straight line when there is some kind of long-range dependency, while it remains time invariant when the dependency does not exist.

References

- Borch, K., "The Theory of Risk," Journal of the Royal Statistical Society B29, 1967, pp. 432–452.
- Cramér, H., "On the Mathematical Theory of Risk", Skandia Jubilee Volume, Stockholm, 1930

■ Emms, P., S. Haberman, and I. Savoulli, "Optimal Strategies for Pricing General Insurance," *Insurance: Mathematics and Economics* 40, 2007, pp. 15–34.

■ Hurst, H. E., "Long-Term Capacity in Reservoirs," *Transactions of the American Society of Civil Engineers* 116, 1951, pp. 400–410.

Kolmogorov, A. N., "Wienersche Spiralen und Einige Andere Interessante Kurven in Hilbertachen Raum,"
C. R. (Doklady) Academy of Sciences USSR (N.S.) 26, 1940, pp. 115–118.

■ Lundberg, F., "Approximerand Framställning au Sannolikehetfunktionen. Återförsäkering au Kollektivrisker," Almqvist & Wiksell, Uppsala, 1903.

Mandelbrot, B. B., and J. W. Van Ness, "Fractional Brownian Motions, Fractional Brownian Noises and Applications," SIAM Review 10, 1968, pp. 422–437.

■ Taylor, G. C., "Underwriting Strategy in a Competitive Insurance Environment," *Insurance: Mathematics and Economics* 5, 1986, pp. 59–77.

■ Zimbidis, A., "Pricing in a Competitive Insurance Market Driven by Fractional Noise " Variance 5:1, 2011, pp. 55-67.