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Introduction

General Topics
▶ Count Data;

▶ Risk Classification;

▶ Panel Data (Longitudinal Data).

Insurance
▶ A priori Ratemaking;

▶ A posteriori Ratemaking;

▶ Number of Claims.
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Minimum Bias

▶ Old Ratemaking Technique;

▶ Introduced by Bailey and Simon(1960) and Bailey(1963);

▶ Has been shown the similarities with some statistical distributions.
See:

▶ Brown(1988);
▶ Mildenhall(1999);
▶ Holler and Sommer(1999) from the 9th exam of the Casualty

Actuarial Society, that expose the link between the GLM and
the minimum bias technique.
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Poisson Distribution

Probability Distribution

Pr[Ni,t = ni,t ] =
e−�i,t�

ni,t
i,t

ni,t !
, �i,t = exp(x ′i,t�)

▶ Regressors are introduced by a score function;
▶ Law of small numbers;
▶ Exponential Family of Distributions : direct application of the

GLM theory;
▶ Equidispersion property;
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Negative Binomial Distributions

Probability Distributions - NB2 and NB1

NB2 : Pr[Ni,t = ni,t ] =
Γ(ni,t + �−1)

Γ(ni,t + 1)Γ(�−1)

( �i,t

�−1 + �i,t

)ni,t
( �−1

�−1 + �i,t

)�−1

NB1 : Pr[Ni,t = ni,t ] =
Γ(ni,t + �−1�i,t )

Γ(ni,t + 1)Γ(�−1�i,t )
(1 + �)−�i,t/�(1 + �−1)−ni,t .

▶ Obtained by adding an heterogeneity term � to the mean parameter of the Poisson
distribution, when � follows a gamma distribution;

▶ NB2 : Var [Ni,t ] = �i,t + ��2
i,t > E [Ni,t ];

▶ NB1 : Var [Ni,t ] = �i,t + ��i,t > E [Ni,t ];
▶ Poisson distribution is the limiting case of NB distributions when �→ 0.
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Time Dependence

Ideas
▶ Classic Poisson and Negative Binomial distributions suppose

independence between all the contracts of the same insured;

▶ There are advantages of using the information on each
policyholder along time for modeling the number of claims;

▶ Allowing for time dependence between observations are closer to
the data generating process that one can find in practice;

▶ Future premiums given the past observations can be calculated
(credibility theory).
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Models

Panel Data
An insurance policy i is observed over T consecutive years, where the
vector of random variables (Ni,1, . . . ,Ni,T ) is the random counts to be
modeled.

In this setting, a dependence between all the contracts of the same
insured can be incorporated.

For non-normal distributions, and more precisely for count distributions,
panel data modeling admits 3 possibilities:

▶ Marginal approach;

▶ Conditional approach with random effects;

▶ Transition models.
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Marginal approach

First order condition for Poisson distributions can be expressed as (GLM):

n∑
i=1

(ni − �i )

g′(�i )Var [Ni ]
Xi = 0

The GEE approach for correlated data generalizes the first order condition by using all
the contracts of the same insured. First order condition can then be expressed as:

n∑
i=1

(
∂

∂�
E [N i ]

)T
V−1

i (ni − E [N i ]) = 0

with: V i = �A1/2
i R i (�)A1/2

i

where Ai is the variance-covariance matrix of the Ni,t s with serial independence, and R i

is the ”working” correlation matrix.
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Transition Models

The idea of the model is to include past realization of the random variable N
into, for example the regressors of the model,

E [Ni,T ∣ni,1, ..., ni,T−1] = g(X ′i � +
T−1∑
t=1


tni,t )

If we suppose that m past realizations must be used in the modeling, we must
work with :

Pr[Ni,1, ...,Ni,T ] = Pr[Ni,1, ...,Ni,m]
T∏

j=m+1

Pr[Ni,j ∣ni,j−1, ..., ni,j−m]

⇒ Pr[Ni,1, ...,Ni,m] is evaluated with difficulty...
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Conditional Approach: Random Effects

▶ Missing of some important classification variables (swiftness of reflexes,
aggressiveness behind the wheel, etc.) in the classification;

▶ Hidden features captured by an individual random heterogeneity term �i ;
▶ Given �i , the annual claim numbers Ni,1,Ni,2, . . . ,Ni,T are independent.
▶ The joint probability function of Ni,1, ...,Ni,T is given by

Pr[Ni,1 = ni,1, ...,Ni,T = ni,T ] =

∫ ∞
0

Pr[Ni,1 = ni,1, ...,Ni,T = ni,T ∣�i ]g(�i )d�i

=

∫ ∞
0

(
T∏

t=1

Pr[Ni,t = ni,t ∣�i ]

)
g(�i )d�i .

▶ Models depend on the choices of the conditional distribution of the Ni,t

and the distribution of �i .
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Multivariate Negative Binomial Distribution (MVNB)

When Ni,t is conditionally distributed as a Poisson distribution with random
effects following a gamma distribution:

Pr[Ni,1 = ni,1, ...,Ni,T = ni,T ] =[
T∏

t=1

(�i,t )
ni,t

ni,t !

]
Γ(
∑T

t=1 ni,t + 1/�)

Γ(1/�)

(
1/�∑T

t=1 �i,t + 1/�

)1/�

×(
T∑

t=1

�i,t + 1/�)−
∑T

t=1 ni,t .
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Negative Binomial-Beta distribution (NB-Beta)

When Ni,t is conditionally distributed as a NB1 distribution with random effects
following a beta distribution:

Pr[Ni,1 = ni,1, ...,Ni,T = ni,T ] =

Γ(a + b)Γ(a +
∑

t �i,t )Γ(b +
∑

t ni,t )

Γ(a)Γ(b)Γ(a + b +
∑

t �i,t +
∑

t ni,t )

T∏
t

Γ(�i,t + ni,t )

Γ(�i,t )Γ(ni,t + 1)
.
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Predictive Distribution

▶ Predictive distributions of panel data with random effects involve
Bayesian analysis;

▶ At each insured period, the random effects can be updated for past claim
experience, revealing some insured-specific informations.

Pr[Ni,T +1 = ni,T +1∣ni,1, ..., ni,T ] =

∫
Pr(ni,T +1∣�i )g(�i ∣ni,1, ..., ni,T )d�i ,

where g(�i ∣ni,1, ..., ni,T ) is the a posteriori distribution of the random effects �i .
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Predictive Premiums

(MVNB) : E [Ni,T +1∣Ni,1, ...,Ni,T ] = �i,T +1

∑T
t ni,t + 1/�∑T
t �i,t + 1/�

.

(NB − Beta) : E [Ni,T +1∣Ni,1, ...,Ni,T ] = �i,T +1

∑T
t ni,t + b∑T

t �i,t + a− 1
,
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Hurdle Model for Panel Count Data

Motivation
Suppose N, the number of claims as the product of:

▶ An indicator variable J (equal to 1 if at least 1 claim);
▶ A counting variable K ≥ 1 (giving the number of claims when at least 1

claim has been filed).

Distribution

Pr[N = n] = Pr[JK = n] =

{
Pr[J = 0] for n = 0
Pr[J = 1] Pr[K = n] for n = 1, 2, ...

.

The representation N = JK is similar to the decomposition of the total claim
amount in the individual model of risk theory.
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Distribution

Let Ni,1,Ni,2, . . . ,Ni,T be the number of claims reported by policyholder i over
period 1 to T .
The joint distribution of Ni,1, ...,Ni,T is given by

Pr[Ni,1 = ni,1, ...,Ni,T = ni,T ]

=

∫ ∫
Pr[Ni,1 = ni,1, ...,Ni,T = ni,T ∣Θi1 = �i1,Θi2 = �i2]g(�i,1, �i,2)d�i,1d�i,2

=

∫ ∫ T∏
t=1

((
Pr[Jit = 0∣Θi1 = �i1]

)I(ni,t =0)

×
(

Pr[Jit = 1∣Θi1 = �i1] Pr[Kit = nit ∣Θi2 = �i2]
)I(ni,t>0)

)
g(�i,1, �i,2)d�i,1d�i,2,

where g is the joint probability density function of (Θi1,Θi2).
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▶ Jit is Bernoulli distributed with mean Θi,1, and the success probability Θi,1

is Beta(ai ,b) distributed.
▶ Covariates enter the model via ai = exp(x ′i �).
▶ Given Θi2 = �i2, Kit obeys a shifted Poisson distribution with mean 
i�i,2,

where 
i = exp(x ′i �).
▶ The random effect Θi,2 is Gamma distributed with mean 1 and variance �.
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Distribution

Consequently, the joint distribution of all contracts of the same insured is
expressed as:

Pr[Ni,1 = ni,1, ...,Ni,T = ni,T ] =∫ ∫ T∏
t=1

(
�

I(ni,t =0)

i,1 (1− �i,1)
I(ni,t>0)

(
e−
i�i,2

(
i�i,2)ni,t−1

(ni,t − 1)!

)I(ni,t>0)
)

g(�i,1, �i,2)d�i,1d�i,2

The two random effects (Θi1,Θi2) are likely to be correlated because the same
omitted characteristics affect each process.
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We use a Gaussian copula to represent the joint distribution of the random
effects.
More precisely, we assume that g can be written as

g(�i,1, �i,2) = cGa(G1(�i,1),G2(�i,2))g1(�i,1)g2(�i,2),

with

cGa(G1(�i,1),G2(�i,2)) =

1√
1− �2

exp

(
−

1

2

(
�2Φ−1(G1(�i,1))2 + �2Φ−1(G2(�i,2))2 − 2�Φ−1(G1(�i,1))Φ−1(G2(�i,2))

1− �2

))

where Φ is the standard Normal distribution function and the marginal density
functions g1 and g2 are Beta and Gamma, respectively,
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Note

▶ If the correlation parameter � is equal to 1 then Θi1 and Θi2 are
perfectly positively dependent. In this case, the Gaussian copula
reduces to the Fréchet-Hoeffding upper bound.

▶ If the correlation parameter � is set to 0 then Θi1 and Θi2 are
mutually independent.
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Moment

E [Ni,t ] = E [�i,1] + 
iE [�i,1�i,2]

Var [Ni,t ] = 
2
i E [�i,1�

2
i,2]

+E [�i,1�i,2] [3
i − 2
iE [�i,1]]

+E [�i,1]− E [�i,1]2 − 
2
i E [�i,1�i,2]2

Cov [Ni,t ,Ni,t+j ] = Var [�i,1] + 2
i

(
E [�2

i,1�i,2]− E [�i,1�i,2]E [�i,1]
)

+
2
i

(
E [�2

i,1�
2
i,2]− E [�i,1�i,2]2

)
.

No closed form expression is available for the likelihood of the model.
Here, we resort to the NLMIXED procedure from the SAS System.
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Predictive Distribution and Predictive Premiums

Formally, the predictive distribution is obtained from

Pr[Ni,T +1 = ni,T +1∣Ni,1 = ni,1, ...,Ni,T = ni,T ]

=
Pr[Ni,1 = ni,1, ...,Ni,T +1 = ni,T +1]

Pr[Ni,1 = ni,1, ...,Ni,T = ni,T ]

=

∫ ∫
Pr[Ni,T +1 = ni,T +1∣�i,1, �i,2]

×
(

Pr[Ni,1 = ni,1, ...,Ni,T = ni,T ∣�i,1, �i,2]g(�i,1, �i,2)∫ ∫
Pr[Ni,1 = ni,1, ...,Ni,T = ni,T ∣�i,1, �i,2]g(�i,1, �i,2)d�i,1d�i,2

)
d�i,1d�i,2

=

∫ ∫
Pr[Ni,T +1 = ni,T +1∣�i,1, �i,2]g(�i,1, �i,2∣ni,1, ..., ni,T )d�i,1d�i,2,

where g(�i,1, �i,2∣ni,1, ..., ni,T ) is the joint posterior distribution of the random
effects (Θi,1,Θi,2), reflecting the past experience of policyholder i .
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Computation

▶ Exact predictive and posterior distributions for the random effects can
only be expressed in closed form for some distributions, such as the
hurdle distribution with independent random effects.

▶ For other models, such as the correlated random effects hurdle models
studied here, these distributions cannot be evaluated analytically.

We use Markov chain Monte Carlo (MCMC) simulations to compute posterior
and predictive distributions.
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Empirical Illustration

▶ We worked with a sample from the automobile portfolio of a major company
operating in Spain.

▶ Only cars for private use were considered in this sample.
▶ 15,179 policyholders who remained with the company for seven complete periods.

Variable Description
Sex equals 1 for women and 0 for men
Years with the company
(3− 5) equals 1 if with the company between 3 and 5 years
(> 5) equals 1 if with the company for more than 5 years
Age equals 1 if the insured is 30 years old or younger
Vehicle Capacity equals 1 if engine capacity is larger or equal to 5500 cc

Table: Exogenous variables
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Comparison of Models

Number of
Models parameters Loglikelihood AIC BIC
MVNB 7 -26,702.98 53,419.96 53,486.98

Hurdle (ind.) 10 -26,688.70 53,397.40 53,493.14
Hurdle (Gauss.) 11 -26,662.47 53,346.94 53,452.25
Hurdle (F.-H.) 10 -26,663.28 53,346.56 53,442.30

Table: Comparison of models for the Spanish data set - Information
Criteria

25/29



Premiums

Good Profile Medium Profile Bad Profile
Models Mean Variance Mean Variance Mean Variance
MVNB 0.0567 0.0595 0.0651 0.0688 0.0902 0.0974

Hurdle Ind. 0.0570 0.0644 0.0659 0.0717 0.0911 0.0997
Hurdle Gaus. 0.0575 0.0654 0.0663 0.0720 0.0909 0.0985
Hurdle F.-H. 0.0577 0.0655 0.0663 0.0718 0.0909 0.0983

Table: Expectations and variances of the annual number of claims for
the different profiles considered
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Predictive Premiums

Sum of claims
Models T − T0 A priori 0 1 2 3 4 10

MVNB . 0.0651 0.0413 0.0778 0.1143 0.1509 0.1874 0.4064

Hurdle Ind. 0 0.0659 0.0448 . . . . .
1 0.0659 . 0.0833 0.0876 0.0920 0.0963 0.1223
2 0.0659 . . 0.1246 0.1304 0.1363 0.1715
3 0.0659 . . . 0.1683 0.1755 0.2190
4 0.0659 . . . . 0.2140 0.2649

10 0.0659 . . . . . 0.5177

Hurdle Gaus. 0 0.0663 0.0441 . . . . .
1 0.0663 . 0.0776 0.1161 0.1510 0.1848 0.3902
2 0.0663 . . 0.1108 0.1495 0.1855 0.3953
3 0.0663 . . . 0.1437 0.1825 0.3965
4 0.0663 . . . . 0.1761 0.3951

10 0.0663 . . . . . 0.3631

Hurdle F.-H. 0 0.0663 0.0441 . . . . .
1 0.0663 . 0.0774 0.1225 0.1655 0.2077 0.4640
2 0.0663 . . 0.1083 0.1539 0.1965 0.4514
3 0.0663 . . . 0.1427 0.1855 0.4386
4 0.0663 . . . . 0.1748 0.4256

10 0.0663 . . . . . 0.3562

Table: Mean of the Predictive Distribution
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Variance

Sum of claims
Models T − T0 A priori 0 1 2 3 4 10

MVNB . 0.0688 0.0428 0.0807 0.1185 0.1564 0.1942 0.4212

Hurdle Ind. 0 0.0717 0.0497 . . . . .
1 0.0717 . 0.0841 0.0975 0.1114 0.1258 0.2220
2 0.0717 . . 0.1155 0.1332 0.1515 0.2735
3 0.0717 . . . 0.1439 0.1652 0.3066
4 0.0717 . . . . 0.1697 0.3256

10 0.0717 . . . . . 0.2710

Hurdle Gaus. 0 0.0719 0.0466 . . . . .
1 0.0720 . 0.0826 0.1289 0.1747 0.2217 0.5486
2 0.0720 . . 0.1186 0.1666 0.2148 0.5393
3 0.0720 . . . 0.1542 0.2036 0.5247
4 0.0720 . . . . 0.1891 0.5066

10 0.0720 . . . . . 0.3801

Hurdle F.-H. 0 0.0718 0.0463 . . . . .
1 0.0718 . 0.0826 0.1334 0.1840 0.2351 0.5661
2 0.0718 . . 0.1176 0.1703 0.2214 0.5492
3 0.0718 . . . 0.1570 0.2080 0.5319
4 0.0718 . . . . 0.1952 0.5146

10 0.0718 . . . . . 0.4228

Table: Variance of the Predictive Distribution
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Conclusion

▶ A priori and predictive premiums are quite close to the MVNB ones;
▶ The corresponding variances greatly differ;
▶ Dependence should not be ignored if one is interested in studying the variance

and not only the mean of the the number of claims;
▶ Ignoring dependence would lead to underestimation of the variance and therefore,

to inefficient pricing.
▶ Premium calculation is usually loaded by a factor which may depend on the

estimated variance.

29/29


	Minimum Bias and Classical Statistical Distributions
	Models Presentation

	Panel Data Models
	Time Dependence
	Models Presentation


