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Reinsurance as a Risk Management Tool

• Reinsurance can be an effective risk management tool for
insurers

• Some reasons for Reinsurance:
• limitation of exposure to risk
• avoidance of large single losses
• increasing capacity to accept risk
• availability of expertise

• The primary goal of reinsurance is to maintain, at an
acceptable level, the random fluctuations of the business
operation of the insurers:
• earning volatilities
• variance of the underlying risk
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Reinsurance Contracts

• Let X denote the loss initially assumed by an insurer
• X is a non-negative r.v. with

• c.d.f. FX (x) = Pr(X ≤ x),
• survival function SX (x) = Pr(X > x), and
• E[X ] <∞

• In the presence of reinsurance, the insurer cedes part of its
loss, say f (X ), to a reinsurer
• f (x) is known as a ceded loss function
• Rf (x) = x − f (x) is the retained loss function
• 0 ≤ f (x) ≤ x and 0 ≤ Rf (x) ≤ x
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Samples Ceded Loss Functions
 
 
 

Quota-share reinsurance Stop-loss reinsurance 

Limited stop-loss reinsurance Truncated stop-loss reinsurance 
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Reinsurance Premium

• By ceding part of its risk to a reinsurer, the insurer incurs
an additional cost in the form of reinsurance premium
which is payable to a reinsurer

• Let Πf (X ) denote the reinsurance premium which
corresponds to a ceded loss function f (x)

• Under expected premium principle:

Πf (X ) = (1 + ρ)E[f (X )]

where ρ > 0 is the relative safety loading
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Optimal Reinsurance
• There’s a tradeoff between the amount of loss retained and

the reinsurance premium payable to reinsurer
• optimal reinsurance design?

• Some plausible optimal reinsurance models:
• Minimizes insurer’s ruin probability
• Classical result (Borch 1960):

min
f

Variance(Rf (X ))

subject to Premium = (1 + ρ)E[f (X )]

⇒ Stop-loss reinsurance is optimal
• By maximizing expected utility of insurer’s terminal wealth,

Arrow (1963) shows that stop-loss reinsurance is optimal
...
• Our approach exploits the risk measure based optimal

reinsurance model of Cai and Tan (2007)
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Risk Measure based Optimal Reinsurance Model

• Define total “risk exposure" of the insurer in the presence
of stop-loss reinsurance as

Tf (X ) = Rf (X ) + Πf (X ) = X − f (X ) + Πf (X )

⇒ implications?

• Risk measure based optimal reinsurance model:

min
f∈C

ψ(Tf (X ))

• ψ(·) is a risk measure
• C is the set of admissible ceded loss functions

• Complexity of this model?
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Cai and Tan (2007): Assumptions

• C is the stop-loss reinsurance with retention d > 0;

f (x) = (x − d)+

• Π is the expected premium principle

• ψ is either
• Value at Risk (VaR) or
• Conditional VaR (CVaR)/Conditional Tail Expectation (CTE)
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VaR vs CVaR at Confidence Level 1− α
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Cai and Tan (2007): Results

• VaR-optimization:

d∗ → min
d>0
{VaRα(Tf (X ); d)

• CVaR-optimization:

d̃ → min
d>0
{CVaRα(Tf (X ); d)}.
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An Alternate Justification

• Let pX be the premium payable by the insured to the
insurer.

• Let rX be the minimum capital set aside by the insurer so
that the insurer’s probability of insolvency is at most α; i.e.

Pr{Tf > rX + pX} ≤ α.

• From the definition of VaR:

rX = VaRα(Tf )− pX .

⇒ min
f

VaRα(Tf (X ))⇔ min
f

rX
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Cai and Tan (2007): VaR-Optimization
• The optimal retention d∗ > 0 that minimizes VaRα(Tf (X)

exists if and only if both

α < ρ∗ < SX (0)

and
S−1

X (α) ≥ S−1
X (ρ∗) + Π

(
S−1

X (ρ∗)
)

hold, where ρ∗ =
1

1 + ρ
.

• When the optimal retention d∗ exists, then d∗ is given by

d∗ = S−1
X (ρ∗)

and the minimum VaR of T is given by

VaRα(Tf (X ),d∗) = d∗ + Π(d∗).
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Examples
X ∼ Exponential Distribution

• SX (x) = e−0.001x

• E[X ] = 1,000, α = 0.1, ρ = 0.2
• optimal retention d∗ exists and equals to

d∗ = S−1
X (ρ∗) = 1,000 log(1 + ρ) = 182.32.

X ∼ Pareto Distribution

• SX (x) =

(
2,000

x + 2,000

)3

, x ≥ 0.

• E[X ] = 1,000, α = 0.1, ρ = 0.2
• optimal retention d∗ exists and equals to

d∗ = S−1
X (ρ∗) = 125.32
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Cai and Tan (2007): CVaR-Optimization

• The optimal retention d̃ > 0 that minimizes
CVaRα(Tf (X ); d) exists if and only if

0 < α ≤ ρ∗ < SX (0).

• When the optimal retention d̃ > 0 exists, d̃ is given by

d̃ = S−1
X (ρ∗) if α < ρ∗,

and d̃ ≥ S−1
X (ρ∗) if α = ρ∗,
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Cai and Tan (2007): Summary

• The optimal reinsurance model is simple and intuitive
• It exploits two prevalent risk measures
• The optimal retention has a very simple analytic form
• If optimal solutions exist, then both VaR- and CVaR-based

optimization criteria yield the same optimal retentions,
except when α = ρ∗

• d∗ = d̃ = S−1
X

(
1

1 + ρ

)
• The optimal retention depends only on the assumed loss

distribution and the reinsurer’s safety loading factor

• Limitations?
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Chi and Tan (2011)
• Generalize Cai and Tan (2007) by considering more

general admission sets of ceded loss functions:

C1 , {0 ≤ f (x) ≤ x : f (x) is an increasing convex function}

C2 , {0 ≤ f (x) ≤ x : both Rf (x) and f (x) are increasing functions}

C3 , {0 ≤ f (x) ≤ x : Rf (x) is an increasing and l.c. function} .

Properties:

• C1 & C2 & C3

• What is the significance of imposing increasing condition
on both retained and ceded loss functions?
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VaR-Optimization under C1

Optimal Reinsurance Model:

min
f∈C1

VaRα(Tf (X ))

Optimal Solution:

• f ∗1(x) =


(x − d∗)+ , VaRα(X ) > β;

c (x − d∗)+ , ∀c ∈ [0,1], VaRα(X ) = β;

0, otherwise,
where

d∗ = VaRρ∗(X ),

β = d∗ + (1 + ρ)E [(X − d∗)+] .

• VaRα(Tf∗1(X )) = min
f∈C1

VaRα(Tf (X )) = min(β, VaRα(X ))

⇒ Stop-loss reinsurance is optimal under C1
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A Special Case

• If ρ∗ ≥ SX (0), then d∗ = 0.

• The optimal ceded loss function f ∗1 simplifies to

f ∗1(x) ,


x , VaRα(X ) > (1 + ρ)E[X ];

cx , ∀c ∈ [0,1], VaRα(X ) = (1 + ρ)E[X ];

0, otherwise.

⇒ Quota-share ceded loss function
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VaR-Optimization under C2

Optimal Reinsurance Model:

min
f∈C2

VaRα(Tf (X ))

Optimal Solution:

• f ∗2(x)

{
min {(x − d∗)+,VaRα(X )− d∗} , d∗ < VaRα(X );

0, otherwise,

• VaRα(Tf∗2(X )) = min[d∗,VaRα(X )]

+(1 + ρ)E [min {(X − d∗)+, (VaRα(X )− d∗)+}] .

⇒ Limited stop-loss reinsurance is optimal under C2
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VaR-Optimization under C3

Optimal Reinsurance Model:

min
f∈C3

VaRα(Tf (X ))

Optimal Solution:

• Let γ = α + ρ∗, then

f ∗3(x) = (x − γ)+I(x ≤ VaRα(X )),

• VaRα(Tf∗3(X )) = γ + (1 + ρ)E [(X − γ)+I(X ≤ VaRα(X ))] .

⇒ Truncated stop-loss reinsurance is optimal under C3
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CVaR-Optimization under C j , j = 1,2,3
Optimal Reinsurance Model:

min
f∈C j

VaRα(Tf (X ))

Optimal Solution:

• f ∗(x) =

{
(x − d∗)+, α < ρ∗;

0, otherwise,

• CVaRα(Tf∗(X )) = min
f∈C j

CVaRα(Tf (X ))

=

{
β, α < ρ∗;

CVaRα(X ), otherwise

⇒ Stop-loss reinsurance is optimal under C j , j = 1,2,3
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Summary/Conclusion

• We extended the reinsurance model of Cai and Tan (2007)
by analyzing the solutions to the VaR- and CVaR-based
optimal reinsurance models over different classes of ceded
loss functions with increasing generality.

• The impact of the optimal reinsurance design on the
assumed feasible set of ceded loss functions is highlighted
in the case of VaR criterion.
• This suggests a difference in risk management strategy

depending on the adopted optimal reinsurance model.
• The different optimal reinsurance policies also suggest the

differences in insurer’s style toward risk management and
its attitude towards risk.

• The CVaR-based optimal reinsurance model is quite robust
in the sense that the stop-loss reinsurance is always the
optimal solution.
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