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•Overview of predictive modeling 

•Predictive modeling in the actuarial world 

•Simple linear models vs generalized linear 

models (GLMs) 

•Specification of GLMs 

• Interpretation of GLM output 

•Frequency/severity vs pure premium modeling 

•Model validation 
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Outline 



•Model – an abstraction of reality, generally 
with a random or probabilistic component 

–Simplification of a real world phenomenon 

•Model types include: 

– Linear models – predict target variable using 
linear combination of predictor variables 

–Trees – split dataset, one variable at a time, 
into subgroups that behave similarly 

–Neural networks – “self-learning” algorithms 
that adapt to best predict a quantity of interest 

3 

What is Predictive Modeling 



• Rating plans – model insurance loss data to build 

plans that charge actuarially fair rates 
 

• Underwriting plans – knowing relative riskiness of 

policyholder can inform underwriting decisions 
 

• Enterprise risk management – model correlations 

between lines of business or probability of ruin 
 

• Customer retention – model probability of 

customer renewing each year 
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How Do Actuaries Use Modeling? 



• Collect Data 

• Exploratory Data Analysis 

– Examine univariate distributions 

– Examine relationship of each variable to target 

• Specify Model 

• Evaluate Output 

• Validate Model 

• “Productize” Model 

• Maintain Model 

• Rebuild Model 
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Predictive Modeling Process 



• Y = β0 + β1*X1 + β2*X2 + … + ε 

– Y is the target or response variable – it is what we are 

trying to predict (e.g. pure premium) 

– X1, X2, etc are the explanatory (e.g. age of driver, type 

of vehicle) variables – we use them to predict Y 

– ε is the error or noise term – it is the portion of Y that is 

unexplained by X 

• μ = E(Y) = β0 + β1*X1 + β2*X2 + … + βn*Xn 

• In general, we are modeling the mean of Y 
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Simple Linear Model 



• Assumptions of simple linear models 
– Target variable Y does not depend on the value of Y for 

any other record, only the predictors 

– Y is normally distributed 

– Mean of Y depends on the predictors, but all records 
have same variance 

– Y is related to predictors through simple linear function 

• Unfortunately, these assumptions are often 
unrealistic 
– Target variables of interest, such as pure premium, 

frequency, and severity, are not normally distributed 
and have non-constant variance 
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Simple Linear Model Assumptions 



• Generalized linear model: g() = β0 + β1*X1 + β2*X2 + 
… + βn*Xn  
 

• Assumptions of generalized linear models 
– Target variable Y does not depend on the value of Y for any 

other record, only the predictors 

– Distribution of Y is a member of the exponential family of 
distributions 

– Variance of Y is a function of the mean of Y 

– g() is linearly related to the predictors.  The function g is 
called the link function 

 

• The exponential family of distributions include the 
following: Normal, Poisson, Gamma, Binomial, 
Negative Binomial, Inverse Gaussian, Tweedie 
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Generalized Linear Models 



• Var(Y) = φ*V(μ)/w 

• φ is the dispersion coefficient, which is estimated 

by the GLM 

• w is the weight assigned to each record 

– GLMs calculate the coefficients that maximize likelihood, and 

w is the weight that each record gets in that calculation 

• V(μ) is the GLM Variance Function, and is 

determined by the distribution 
– Normal: V(μ) = 1 

– Poisson:  V(μ) = μ 

– Gamma:  V(μ) = μ2 
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GLM Variance Function 



• g() = β0 + β1*X1 + β2*X2 + … 

• Common choices for link function 
– Identity: g() =  

– Log: g() = ln() 

– Logit: g() = ln[
µ

1−µ
] 

 

• Log link commonly used to model rating plans 
because it produces multiplicative relativities 
– ln() = β0 + β1*X1 + β2*X2 

    = exp(β0 + β1*X1 + β2*X2)  

    = exp(β0)*exp(β1*X1)*exp(β2*X2) 

• Logit link used to model probability of event occurring 
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GLM Link Function 



• An effect in a model that is fixed by the modeler 

• Variable offsets – fix the effect of variables that are 

not being modeled 
– Example: Constructing a rating plan and not modeling base 

territory rates 

– Solution: Offset for current territory rates 

• Volume offsets – reflect fact that different records 

have different volumes of data and thus have 

different expected values 
– Example: Modeling claim counts.  Some records have a single 

exposure, other have many exposures 

– Solution: Offset for exposure volume of each observation 
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Offsets 



• Discrete variables: exponentiate GLM coefficient 
– Example: coefficient for youth drivers is 0.52 

   Rating factor = exp(0.52) = 1.68 

   Youth drivers have 68% surcharge relative to base level of adult 
      drivers (who, by definition, have rating factor of 1.00) 

• Continuous variables with no transformation 
– Example: modeling pure premium, and annual miles driven is a 

continuous variable 

– As miles driven increases by 1 unit, expected pure premium is scaled by a 
factor of exp(β), regardless of whether mileage goes from 1,000 to 2,000 
or 20,000 to 21,000 

• Continuous variables with log transformation 
– Pure premium ~ (annual mileage)^β 

– If β < 1, then as mileage increases, pure premium increases at decreasing 
rate 
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Interpreting GLM Coefficients w/ Log Link 



• GLMs allow us to quantify uncertainty in parameter 
estimates 
 

• Wald 95% confidence interval for mean of parameter 
estimate = Mean +/- 1.96*(Standard Error) 
 

• Test for the significance of an individual parameter 
– Wald Chi Square = (Parameter Estimate/Standard Error)^2 

  Approximately follows a Chi Squared distribution with 1 degree 
 of freedom 

– P-value is probability of obtaining a Chi Square statistic of given 
magnitude by pure chance 

  Lower p-value  more significant 
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Uncertainty in Parameter Estimates 



• Pure Premium Approach: Build a single model for 

pure premium 

– Generally straightforward to implement 
 

• Frequency-Severity Approach: Build one model 

for claim frequency and another for claims 

severity 

– Additional work for additional insight 
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Two Modeling Approaches 



• Advantages: 
– Only a single model needs to be built 

– No need to split variable offsets 

– Results often very similar to frequency-severity 
approach 

 

• Disadvantages: 
– Yields less insight than frequency-severity 

– Tweedie distribution is only good choice 

• Relatively new and mathematically complex 

• Includes implicit assumptions that may not hold 
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Pure Premium Approach 



• Advantages: 

– May yield meaningful insights about data  

– Can choose from several well-known and well-

understood distributions 
 

• Disadvantages: 

– Two models to build, run, and validate 

– Requires splitting variable offsets 

– Often produces limited additional benefit 
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Frequency-Severity Approach 



• Mixed Poisson-Gamma process – number of 

claims follow a Poisson distribution, and the size 

of each claim follows a Gamma distribution 
 

• The Tweedie is a 3-parameter distribution: 

– Mean (μ), equal to the product of the means of the 

underlying Poisson and Gamma distributions 

– Power (p), which depends on the coefficient of variation 

of the underlying Gamma distribution 

– Dispersion (φ), a measure of variance 
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Tweedie Distribution 



•Poisson 

–The Coca Cola of claim count distributions 
 

•Overdispersed frequency distributions 

–Overdispersed Poisson 

–Zero-Inflated Poisson 

–Negative Binomial 

–Zero-Inflated Negative Binomial 
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Frequency Distribution Options 



• Several reasonable distributions 

• Criteria 

– Member of exponential family 

–  p≥2, where V(µ)=µp 

• In order of increasing variance: 

– Gamma (p=2) 

– Tweedie (2<p<3) 

– Inverse Gaussian (p=3) 

– Tweedie (p>3) 
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Severity Distribution Options 



•Tests of Fit 

•Tests of Lift 

•Tests of Stability 
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Three Pillars of Model Validation 



•Traditional: Absolute/Squared Error 

•Alternatives: Likelihood, Deviance, Pearson’s 

Chi-Squared 

•Penalized: AIC, BIC 

•Per Observation: Residuals, Leverage 
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Fit Statistics 



• Only appropriate if data is normally distributed 
 

• Inappropriate to use on disaggregate claim 

frequency, severity, or pure premium data 
 

• Useful to assess model fit within buckets 

– Bucket data into percentiles, or similar quantiles, 

and calculate squared difference between actual 

and predicted for each bucket 
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Absolute/Squared Error 



• Likelihood: chance of observation, given model 

– Always increases as parameters are added to model 

• Deviance: twice the difference in loglikelihoods 

between the saturated and fitted models 

– GLMs are fit so as to minimize deviance 

– Accounts for the shape of the distribution 

• Pearson’s chi-squared: squared error divided by 

the variance function of the distribution 

– Accounts for the skew of the distribution 
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Better Alternatives to Squared Error 



• Akaike Information Criterion (AIC): Penalizes 

loglikelihood for additional model parameters 
 

• Bayesian Information Criterion (BIC): Penalizes 

loglikelihood for additional model parameters, 

and this penalty increases as the number of 

records in the dataset increases 

– Can be too restrictive 
 

• Used primarily for variable selection 
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Penalized Measures 



• Traditional residual: actual minus predicted 
 

• Deviance residual: square root of weighted 

deviance times sign of actual minus predicted 

– Reflects the shape of the distribution 

– Plotting deviance residual against weight or any 

predictor should yield an uninformative cloud 

– Should be approximately normally distributed 
 

• Leverage: used to identify extreme outliers 

– Does not necessarily measure impact 
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Per Observation 



• Lift is meant to approximate economic value 

– Fit has no relationship with economic value 
 

• Economic value is produced by comparative 

advantage in avoidance of adverse selection 

– Lift is a comparative measure, i.e. the lift of one model 

over another, or the lift of a model over status quo 
 

• Lift should always be measured on holdout data 
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Model Lift 



•Simple Quantile Plot 

•Double Lift Chart  

•Loss Ratio Chart 

•Gini Index 
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Lift Measures 



Model Lift – Simple Quantile Plots 
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Double Lift Chart 
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Loss Ratio Chart 
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Economic Gini Index 



• Model should differentiate lowest and highest loss 

cost policyholders 

• Creation of Gini index: 

– Order policyholders by model prediction, from best to 

worst 

– X-axis is cumulative percent of exposures 

– Y-axis is cumulative percent of losses 

• Had model produced Gini index in prior slide, 

would have identified 60% of exposures that 

contribute only 20% of losses 
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Gini Index of Rating Plan 



•Cross-validation 

–Split data into subsets (e.g. by time period) 

–Refit model on each subset 

–Compare model parameter estimates 

•Bootstrapping 

–Refit model on many bootstrapped samples 

–Calculate variability of parameter estimates 

•Deletion of influential records 
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Methods for Testing Model Stability 



•Cook’s Distance: Statistical measure of the 

impact each record has on the overall model 

–Excellent tool for identifying errors or anomalies 

–Deletion of records with high Cook’s Distance 

may significantly change model results, and so 

this procedure can be used to test stability 

•DFBETA: Influence on a certain parameter 

• Influence is not to be confused with leverage 
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Measures of Influence 



For Further Reference 

• Anderson, Duncan, et. al., A 
Practitioner’s Guide to 
Generalized Linear Models, 
CAS Discussion Paper 
Program, 2004 
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