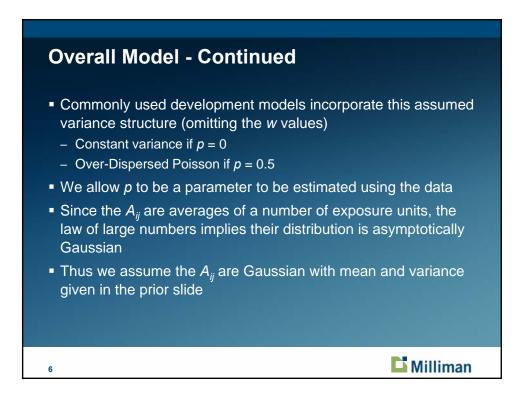

<section-header><text><text><text><image>

Overall Model

5


 Assume the expected value of the incremental averages can be expressed as functions of a parameter (possibly vector) θ

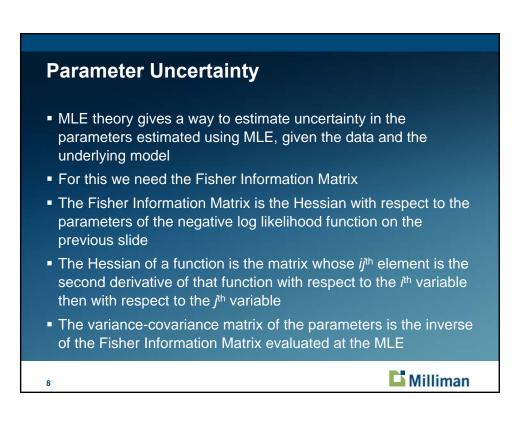
$$\mathsf{E}(A_{ij}) = g_{ij}(\boldsymbol{\theta})$$

 We will also assume that the variance of each A_{ij} is proportional to a power of its mean. Since each A_{ij} represents an average we also adjust the assumed variance to reflect different exposure (claim) levels by accident year, denoted w_i so we assume

$$\operatorname{Var}\left(\mathcal{A}_{ij}\right) = \mathbf{e}^{\kappa - w_{i}} \left(\mathbf{g}_{ij}\left(\mathbf{\theta}\right)^{2}\right)^{k}$$

🗅 Milliman

Parameter Estimation


7

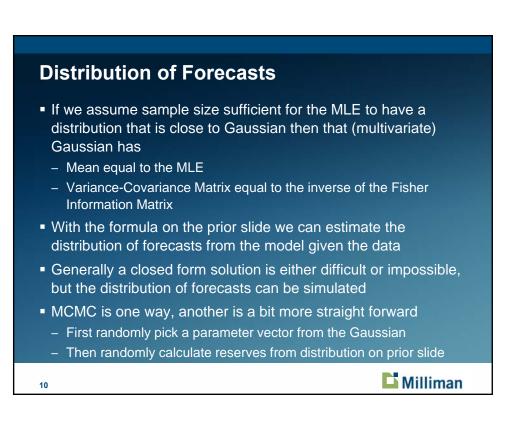
 Under the previous assumptions the negative log likelihood function of the observations given a set of parameters is given by

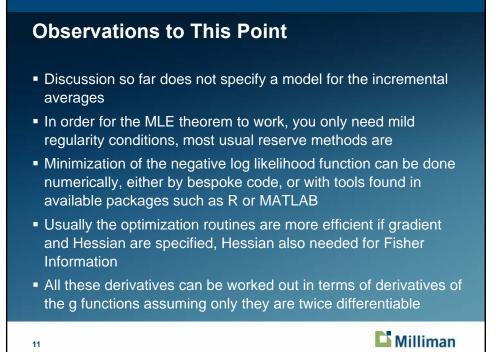
$$\ell\left(\boldsymbol{A}_{11}, \boldsymbol{A}_{12}, \dots, \boldsymbol{A}_{n1}; \boldsymbol{\theta}, \kappa, \boldsymbol{p}\right) = \frac{\kappa - \boldsymbol{e}_{i} + \ln\left(2\pi\left(\boldsymbol{g}_{ij}\left(\boldsymbol{\theta}\right)^{2}\right)^{\boldsymbol{p}}\right)}{2} + \frac{\left(\boldsymbol{A}_{ij} - \boldsymbol{g}_{ij}\left(\boldsymbol{\theta}\right)\right)^{2}}{2\boldsymbol{e}^{\kappa - \boldsymbol{w}_{i}}\left(\boldsymbol{g}_{ij}\left(\boldsymbol{\theta}\right)^{2}\right)^{\boldsymbol{p}}}$$

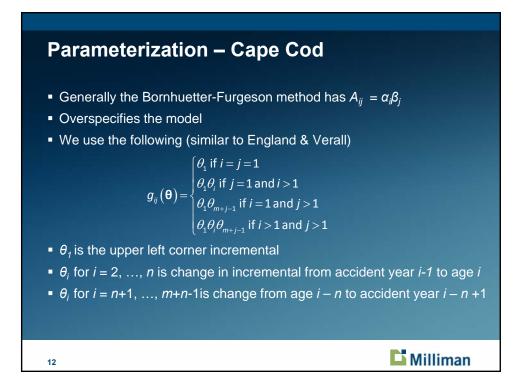
- Except for very simple loss models finding the minimum of this expression not possible
- Numerical methods available in many packages (R, MATLAB, etc.) can handle the job

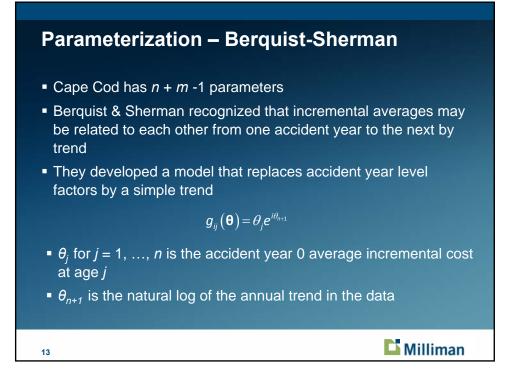
Milliman

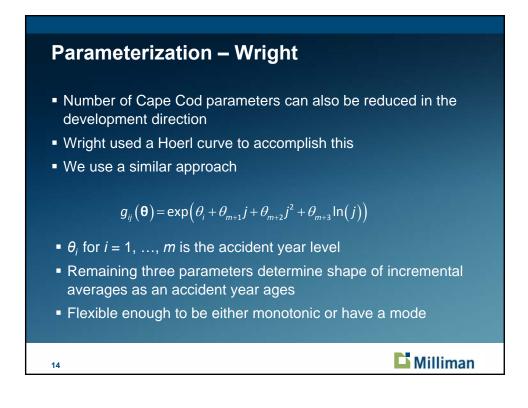
Distribution of Forecasts, Fixed Parameters

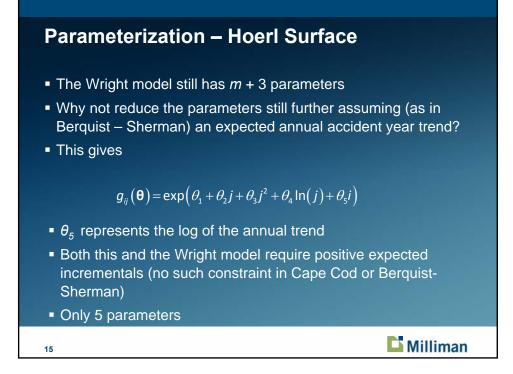

 Since we assume incremental averages are independent once we have the parameter estimates we have estimate of the distribution of future outcomes given the parameters

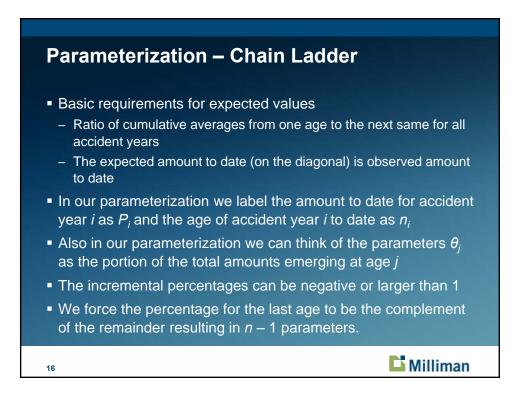

$$R_{i} \sim \mathsf{N}\left(E_{i}\sum_{j=n-i+2}^{n}g_{ij}\left(\hat{\boldsymbol{\theta}}\right), E_{i}^{2}\sum_{j=n-i+2}^{n}e^{\hat{\kappa}-e_{i}}\left(g_{ij}\left(\hat{\boldsymbol{\theta}}\right)^{2}\right)^{\rho}\right)$$
$$R_{T} \sim \mathsf{N}\left(\sum_{i=1}^{m}E_{i}\sum_{j=n-i+2}^{n}g_{ij}\left(\hat{\boldsymbol{\theta}}\right), \sum_{i=1}^{m}E_{i}^{2}\sum_{j=n-i+2}^{n}e^{\hat{\kappa}-e_{i}}\left(g_{ij}\left(\hat{\boldsymbol{\theta}}\right)^{2}\right)^{\rho}\right)$$

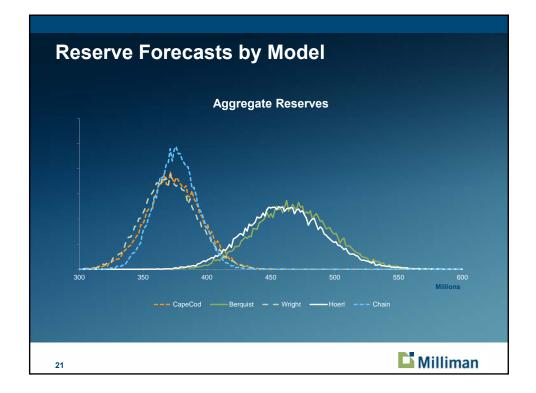

 This is the estimate for the average future forecast payment per unit of exposure, multiplying by exposures


Milliman


 This is not a distribution of forecasts under the model since there is no uncertainty in parameter choice






Parameterization – Chain Ladder (Continued)

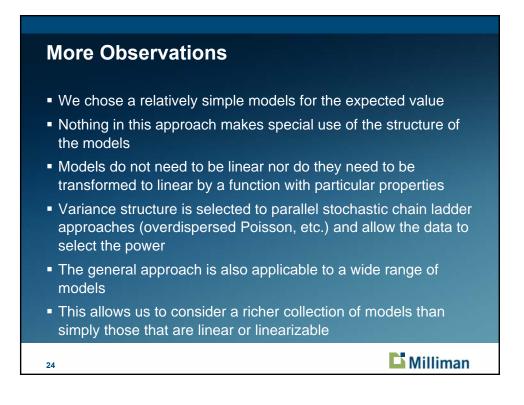
$$\begin{cases} P_{1}\theta_{j} \text{ if } j < n \text{ and } i = 1 \\ P_{1}\left(1 - \sum_{k=1}^{n-1}\theta_{k}\right) \text{ if } j = n \text{ and } i = 1 \\ g_{ij}(\mathbf{\theta}) = \begin{cases} \frac{P_{i}\theta_{j}}{\sum_{k=1}^{n}\theta_{k}} & \text{ if } j < n \text{ and } i \neq 1 \\ \sum_{k=1}^{n}\theta_{k} & \frac{P_{i}}{\sum_{k=1}^{n}\theta_{k}} & \text{ if } j = n \text{ and } i \neq 1 \end{cases}$$

Exa	mpl	e C	omr	ner	cial	Aut	o Li	ab.	Paio	d Da	ata
Cumulati	ve Aver	age Paid	Loss &	Defense	& Cost	Containr	nent Exp	enses p	er Estim	ated Ulti	mate Claim
Accident				Count							
Year	<u>12</u>	<u>24</u>	<u>36</u>	<u>48</u>	<u>60</u>	<u>72</u>	<u>84</u>	<u>96</u>	<u>108</u>	<u>120</u>	<u>Forecast</u>
2001	670	1,480	1,939	2,466	2,838	3,004	3,055	3,133	3,141	3,160	39,161
2002	768	1,593	2,464	3,020	3,375	3,554	3,602	3,627	3,646		38,672
2003	741	1,616	2,346	2,911	3,202	3,418	3,507	3,529			41,801
2004	862	1,755	2,535	3,271	3,740	4,003	4,125				42,263
2005	841	1,859	2,805	3,445	3,950	4,186					41,481
2006	848	2,053	3,076	3,861	4,352						40,214
2007	902	1,928	3,004	3,881							43,599
2008	935	2,104	3,182								42,118
2009	759	1,585									43,479
2010	723										49,492
18										🗆 Mi	lliman

Results	
Model	Expected Reserves (000,000)
Cape Cod	\$391
Berquist-Sherman	480
Wright	388
Hoerl Surface	474
Chain Ladder	393
 Some difference in expected re Is the difference random? Is the difference significant? How do you know? Stochastic models help answer 	
19	🗅 Milliman

Model	Total Reserve Process Std. Dev. (000)	Total Reserve Total Std. Dev. (000)
Cape Cod	\$ 9,435	\$20,101
Berquist-Sherman	15,997	29,405
Wright	10,029	20,375
Hoerl Surface	16,115	29,454
Chain Ladder	9,447	15,557

V	۷h	at	Ha	pp	Dei	ne	d?												
						Sta	and	ard	izec	d Res	sidı	uals	;						
0.22	0.13	-2.73	-0.58	0.08	-0.57	-0.97	1.88	-0.49	0.31	0.86	1.25	-3.37	0.16	0.92	-0.31	-0.76	1.99	-0.14	0.
0.90	-0.07	0.89	-0.55	-0.41	-0.45	-1.22	-1.32	0.87		0.78	-0.37	1.65	-0.81	-0.61	-0.71	-1.30	-1.22	0.71	
0.30	0.04	-0.76	-0.76	-1.64	0.19	0.32	-1.61			0.75	0.83	-0.17	-0.34	-1.79	0.53	0.51	-1.34		
1.18	-0.16	-0.63	0.78	0.72	1.02	1.54				0.67	-1.11	-1.41	0.84	0.65	0.82	1.29	-		
0.60	0.54	0.51	-0.55	0.93	0.17					-0.19	0.16	0.58	-1.23	1.01	-0.19				
0.31	1.67	0.80	0.58	0.42						-1.38	1.24	0.30	-0.08	-0.24					
0.46	-0.14	0.89	1.18							-0.74	-1.35	0.96	1.33						
0.39	0.60	0.50								-0.65	0.17	0.52							
-1.52	2.43									0.58	-0.48								
and a				Berg	uist					0.03				Cape	Cod				
			1	Ber	auis	st						С	ape	Co					
0.20	-0.03	-2.85	-0.45	0.13	-0.61	-1.16	1.73	-0.39	1.92	0.91	1.30	-3.32	0.20	0.95	-0.29	-0.75	2.02	-0.14	0.
0.90	-0.23	0.82	-0.40	-0.31	-0.51	-1.32	-0.63	0.30		0.83	-0.31	1.72	-0.76	-0.57	-0.68	-1.29	-1.21	0.72	
0.32	-0.11	-0.85	-0.60	-1.44	0.01	-0.35	-0.83	0.00		0.77	0.86	-0.14	-0.32	-1.78	0.55	0.52	-1.34	0.7 2	
1.23	-0.30	-0.71	0.99	0.78	0.71	0.44	Concerne.			0.61	-1.16	-1.46	0.79	0.61	0.80	1.28			
0.67	0.46	0.49	-0.35	1.00	0.01					-0.21	0.13	0.56	-1.24	0.99	-0.19				
0.39	1.66	0.81	0.83	0.53						-1.38	1.23	0.30	-0.08	-0.24					
0.57	-0.23	0.93	1.49							-0,74	-1.35	0.95	1.32						
0.52	0.58	0.54								-0.67	0.14	0.50							
-1.47	-2.66									0.55	-0.51								
-2.27				Hoe	er l					0.00				Chalair	ddae				
			н	oer								Cha	ain			r			
				001	-							Unit							
																Mi			
																B / I :	1 1 1 1 1 1 1 1		


Some Observations

23

- The data imply that the variance for payments in a cell are roughly proportional to the mean to the 0.85 power for both Cape Cod and Chain Ladder, roughly to the mean for the Hoerl model and to the mean to the 1.30 power for the Berquist model.
- Total standard deviation well above process, often more than double, meaning parameter uncertainty is significant
- Comparison of forecasts among models underlines the importance of model uncertainty
- Still more work to be done to get a handle on model uncertainty

 possibly greater than the other two sources

Some Cautions

25

- MODEL UNCERATINTY STILL NEEDS TO BE CONSIDERED thus distributions are distributions of outcomes <u>under a specific</u> <u>models</u> and must not be confused with the actual distribution of outcomes for the loss process
- An evolutionary Bayesian approach can help address model uncertainty
 - Apply a collection of models and judgmentally weight (a subjective prior)
 - Observe results for next year and reweight using Bayes Theorem
- We are using asymptotic properties, no guarantee we are far enough in the limit to assure these are close enough
- Actuarial "experiments" not repeatable so frequentist approach (MLE) may not be appropriate

Milliman

