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This talk is based on the following paper:

I Liang Peng and Ruodu Wang (2014). Estimating bivariate
t-copula via Kendall’s tau. Variance. To appear.
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Introduction

Copula: For a random vector (X ,Y ) with continuous marginal
distributions F1 and F2, its copula is defined as

C (x , y) = P(F1(X ) ≤ x ,F2(Y ) ≤ y) for 0 ≤ x , y ≤ 1.

t-copula: The t-copula is an elliptical copula defined as

C (u, v ; ρ, ν) =
∫ t−ν (u)
−∞

∫ t−ν (v)
−∞

1
2π(1−ρ2)1/2 {1

+ x2−2ρxy+y2

ν(1−ρ2) }
−(ν+2)/2 dydx ,

(1)

where ν > 0 is the number of degrees of freedom, ρ ∈ [−1, 1] is
the linear correlation coefficient, tν is the distribution function of a
t-distribution with ν degrees of freedom and t−ν denotes the
generalized inverse function of tν . When ν = 1, the t-copula is also
called a Cauchy copula.
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Known results: Breymann, Dias and Embrechts (2003) and
Mashal, Naldi and Zeevi (2003) showed that empirical fit of the
t-copula is better than the Gaussian copula. Some recent
applications and generalization of t-copula include: Schloegl and
O’Kane (2005) provided formulas for the portfolio loss distribution
when t-copula is employed; de Melo and Mendes (2009) priced the
options related with retirement funds by using the Gaussian and t
copulas;
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Chan and Kroese (2010) used t-copula to model and estimate the
probability of a large portfolio loss; Manner and Segers (2011)
studied the tails of correlation mixtures of the Gaussian and t
copulas; grouped t-copula were given in Chapter 5 of McNeil, Frey
and Embrechts (2005); Luo and Shevchenko (2010) and Venter et
al. (2007) extended the grouped t-copula; tail dependence for
multivariate t-copula and its monotonicity were studied by Chan
and Li (2008).
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Estimation: In order to fit the t-copula to a random sample
(X1,Y1), · · · , (Xn,Yn), one has to estimate the unknown
parameters ρ and ν first.
Pseudo MLE: Since the distribution of (F1(Xi ),F2(Yi ))′s is the
t-copula, we can use maximum likelihood estimation. However, F1
and F2 are unknown. Therefore we estimate them by
Fn1(x) = 1

n+1

∑n
i=1 Xi and Fn2(y) = 1

n+1

∑n
i=1 Yi , respectively.

Hence, we can apply the MLE to the pseudo data
(Fn1(Xi ),Fn2(Yi ))′s, which is called pseudo maximum likelihood
estimate by Genest, Ghoudi and Rivest (1995).
Although, generally speaking, the pseudo MLE is efficient, its
computation becomes a serious issue when applying to t-copulas
especially with a large dimension.
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Two-step estimation procedure: A more practical method to
estimate ρ is through the Kendall’s tau, defined as

τ = E(sign((X1−X2)(Y1−Y2))) = 4

∫ 1

0

∫ 1

0
C (u1, u2) dC (u1, u2)−1.

It is known that τ and ρ have a simple relationship

ρ = sin(πτ/2).

By noting this relationship, Lindskog, McNeil and Schmock (2003)
proposed to first estimate ρ by

ρ̂ = sin(πτ̂/2), where τ̂ =
2

n(n − 1)

∑
1≤i<j≤n

sign((Xi−Xj)(Yi−Yj)),
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and then to estimate ν by maximizing the pseudo likelihood
function

n∏
i=1

c(Fn1(Xi ),Fn2(Yi ); ρ̂, ν),

where c(u, v ; ρ, ν) = ∂2

∂u∂vC (u, v ; ρ, ν) is the density of the
t-copula defined in (1). In other words, the estimator ν̂ is defined
as a solution to the score equation

n∑
i=1

l(ρ̂, ν;Fn1(Xi ),Fn2(Yi )) = 0, (2)

where l(ρ, ν; u, v) = ∂
∂ν log c(u, c; ρ, ν). τ̂ is called the Kendall’s

tau estimator.
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Asymptotic limit: A recent attempt to derive the asymptotic
distribution for the two-step estimator (ρ̂, ν̂) is given by Fantazzini
(2010), who employed the techniques for estimating equations.
Unfortunately the derived asymptotic distribution in Fantazzini
(2010) is not correct since the Kendall’s tau estimator is a
U-statistic rather than an average of independent observations.
Numeric comparisons for the two estimation procedures are given
in Dakovic and Czado (2011).

Liang Peng Estimating bivariate t-copulas via Kendall’s tau

Notes

Notes

Notes



Introduction
Methodology

Simulation
Real Data Analysis

Proofs

Methodology

Here we first derive the joint asymptotic limit of the two-step
estimator (ρ̂, ν̂) as follows.
Theorem 1. As n→∞, we have

√
n{ρ̂− ρ}

= cos(πτ2 ) π√
n

∑n
i=1 4{C (F1(Xi ),F2(Yi ))− EC (F1(X1),F2(Y1))}

− cos(πτ2 ) π√
n

∑n
i=1 2{F1(Xi ) + F2(Yi )− 1}+ op(1)

(3)
and
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√
n{ν̂ − ν}

= −K−1ν { 1√
n

∑n
i=1 l(ρ, ν;F1(Xi ),F2(Yi )) + Kρ

√
n(ρ̂− ρ)

+ 1√
n

∑n
i=1

∫ 1
0

∫ 1
0 lu(ρ, ν; u, v){I (F1(Xi ) ≤ u)− u}c(u, v) dudv

+ 1√
n

∑n
i=1

∫ 1
0

∫ 1
0 lv (ρ, ν; u, v){I (F2(Yi ) ≤ v)− v}c(u, v) dudv}

+op(1),
(4)

where lu(ρ, ν; u, v) = ∂
∂u l(ρ, ν; u, v), lv (ρ, ν; u, v) = ∂

∂v l(ρ, ν; u, v),
and for a = ν, ρ,

Ka = E
(
∂

∂a
l(ρ, ν;F1(X1),F2(Y1))

)
=

∫ 1

0

∫ 1

0

∂

∂a
l(ρ, ν; u, v) dC (u, v).
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Using the above theorem, we can easily obtain that

√
n(ρ̂− ρ, ν̂ − ν)T

d→ N

(
(0, 0)T ,

(
σ21 σ12
σ12 σ22

))
, (5)

where σ21, σ12 and σ22 are constants whose values are given in the
proof of Theorem 1.
Question: How to construct confidence intervals/regions
effectively?
Normal Approximation Method: We seek an alternative way,
Empirical Likelihood Method, since the above asymptotic
covariance matrix is too complicated.
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Parametric likelihood ratio test

Observations: X1, · · · ,Xn iid with pdf f (x ; g(µ)), where g is a
known function, but µ = E (X1) is unknown.

Question: test H0 : µ = µ0 against Ha : µ 6= µ0

PLRT: Let µ̂ denote the maximum likelihood estimate for µ. Then
the likelihood ratio is defined as

λ = Πn
i=1f (Xi ; g(µ0))/Πn

i=1f (Xi ; g(µ̂)).

The likelihood ratio test is based on the following

Wilks Theorem. Under H0, −2 log λ
d→ χ2(1) as n→∞.
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Empirical likelihood method

When we do not fit a class of parametric family to Xi , but still test
H0 : µ = µ0 vs Ha : µ 6= µ0, a similar approach to the parametric
likelihood ratio test was introduced by Owen (1988, 1990), which
is a nonparametric likelihood ratio test and called empirical
likelihood method.
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Define the empirical likelihood ratio function for µ as

R(µ) = sup{
n∏

i=1

(npi ) | pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piXi = µ}.

By Lagrange multiplier technique, we have
pi = n−1{1 + λT (Xi − µ)}−1 and

−2 logR(µ) = 2
n∑

i=1

log{1 + λT (Xi − µ)},

where λ = λ(µ) satisfies

n−1
n∑

i=1

Xi − µ
1 + λT (Xi − µ)

= 0.
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Wilks Theorem: Under H0,

W (µ0) := −2 logR(µ0)
d→ χ2(d) as n→∞,

where µ ∈ Rd .
Confidence interval/region: The above theorem can be employed
to construct a confidence interval or region for µ as

Iα = {µ : W (µ) ≤ χ2
d ,α}.

Advantages: i) No need to estimate any additional quantities such
as asymptotic variance; ii) the shape of confidence interval/region
is determined by the sample automatically; iii) Bartlett correctable
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Estimating equations

A popular way to formulate the empirical likelihood function is via
estimating equations.
Observations: X1, · · · ,Xn iid with common distribution function F
and there is a q-dimensional parameter θ associated with F .
Conditions: Let yT denote the transpose of the vector y and

G (x ; θ) = (g1(x ; θ), · · · , gs(x ; θ))T

denote s(≥ q) functionally independent functions, which connect
F and θ through the equations EG (X1; θ) = 0.
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Empirical likelihood function:

R(θ) = sup{
n∏

i=1

(npi ) : pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piG (Xi ; θ) = 0}.

Wilks Theorem: −2 logR(θ0)
d→ χ2(q) as n→∞.
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Profile empirical likelihood method

Suppose we are only interested in a part of θ. Then like the
parametric profile likelihood ratio test, we have the profile
empirical likelihood method.
Observations: X1, · · · ,Xn iid with common distribution function F
and there is a q-dimensional parameter θ associated with F . Write
θ = (αT , βT )T , where α and β are q1-dimensional and
q2-dimensional parameters, respectively, and q1 + q2 = q. Now we
are interested in α.
Conditions: Let yT denote the transpose of the vector y and

G (x ; θ) = (g1(x ; θ), · · · , gs(x ; θ))T

denote s(≥ q) functionally independent functions, which connect
F and θ through the equations EG (X1; θ) = 0.
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Profile empirical likelihood ratio:

l(α) = 2lE ((αT , β̂T (α))T )− 2lE (θ̃),

where lE (θ) =
∑n

i=1 log{1 + λTG (Xi ; θ)}, λ = λ(θ) is the solution
of the following equation

0 =
1

n

n∑
i=1

G (Xi ; θ)

1 + λTG (Xi ; θ)
,

θ̃ = (α̃T , β̃T )T minimizes lE (θ) with respect to θ, and β̂(α)
minimizes lE ((αT , βT )T ) with respect to β for fixed α.

Wilks Theorem: l(α0)
d→ χ2(q1) as n→∞, where α0 denotes the

true value of α.
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Jackknife empirical likelihood method

Empirical likelihood method has difficulties in dealing with
nonlinear functionals.
Example: Covariance. Suppose (X1,Y1), · · · , (Xn,Yn) are iid with
covariance σ12 = E{(X1 − E (X1))(Y1 − E (Y1))}, and we are
interested in testing H0 : σ12 = σ0 against Ha : σ12 6= σ0.
Method 1: Define the empirical likelihood function

R(σ12) = sup{
∏n

i=1(npi ) : pi ≥ 0,
∑n

i=1 pi = 1,∑n
i=1 pi{Xi −

∑n
j=1 pjXj}{Yi −

∑n
j=1 pjYj} = σ12}.

In this way, the above minimization is too complicated due to no
formula for p′i s.
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Method 2: Define the empirical likelihood function

R(σ12) = sup{
∏n

i=1(npi ) : pi ≥ 0,
∑n

i=1 pi = 1,∑n
i=1 pi{Xi − n−1

∑n
j=1 Xj}{Yi − n−1

∑n
j=1 Yj} = σ12}.

Then −2 logR(σ0) can not converge in distribution to a
chi-squared distribution since the above procedure fails to catch
the variances contribution made by n−1

∑n
i=1 Xi and n−1

∑n
i=1 Yi .

As a matter of fact, the limit is a weighted sum of two
independent chi-squared random variables.
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Method 3: Define the empirical likelihood function as

R(µ1, µ2σ12) = sup{
∏n

i=1(npi ) : pi ≥ 0,
∑n

i=1 pi = 1,∑n
i=1 piXi = µ1,

∑n
i=1 piYi = µ2,∑n

i=1 pi (Xi − µ1)(Yi − µ2) = σ12}

and the profile empirical likelihood function as

RP(σ12) = max
µ1,µ2

R(µ1, µ2, σ12).

Wilks theorem: −2 logRP(σ0)
d→ χ2(1) as n→∞.

Computional issues: After introducing the link variable µ, the
computation is increased.
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Jackknife empirical likelihood for covariance: Put

σ̂n =
1

n

n∑
i=1

{Xi − n−1
n∑

j=1

Xj}{Yi − n−1
n∑

j=1

Yj}

and

σ̂n,l =
1

n − 1

∑
i 6=l

{Xi −
1

n − 1

∑
j 6=l

Xj}{Yi −
1

n − 1

∑
j 6=l

Yj}.

Then define the jacknife sample as

Zl = nσ̂n − (n − 1)σ̂n,l

for l = 1, · · · , n, and define the jackknife empirical likelihood
function as

R(σ12) = sup{
n∏

i=1

(npi ); pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piZi = σ12}.
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Wilks Theorem: −2 logR(σ0)
d→ χ2(1) as n→∞.

Computation: In R, one can employ the package ’emplik’.
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Interval estimation for ν. A direct application of empirical
likelihood method fails to catch the contribution made by the first
step estimation for ρ. Here we consider the jackknife empirical
likelihood. In order to construct a jackknife sample as in Jing, Yuan
and Zhou (2009), we first define for i = 1, · · · , n ρ̂i = sin(πτ̂i/2),

τ̂i =
2

(n − 1)(n − 2)

∑
1≤j<l≤n,j 6=i ,l 6=i

sign((Xj − Xl)(Yj − Yl)),

Fn1,i (x) =
1

n

∑
j 6=i

I (Xj ≤ x), Fn2,i (y) =
1

n

∑
j 6=i

I (Yj ≤ y),

and then define the jackknife sample as

Zi (ν) =
n∑

j=1

l(ρ̂, ν;Fn1(Xj),Fn2(Yj))−
∑
j 6=i

l(ρ̂i , ν;Fn1,i (Xj),Fn2,i (Yj))

for i = 1, · · · , n.
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Based on this jackknife sample, the jackknife empirical likelihood
function for ν is defined as

L1(ν) = sup{
n∏

i=1

(npi ) : p1 ≥ 0, · · · , pn ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piZi (ν) = 0}.

By the Lagrange multiplier technique, we have

l1(ν) := −2 log L1(ν) = 2
n∑

i=1

log{1 + 2λ1Zi (ν)},

where λ1 = λ1(ν) satisfies

n∑
i=1

Zi (ν)

1 + λ1Zi (ν)
= 0.

The following theorem shows that Wilks Theorem holds for the
above jackknife empirical likelihood method.
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Theorem 2. As n→∞, l1(ν0) converges in distribution to a
chi-square limit with one degree of freedom, where ν0 denotes the
true value of ν.
Based on the above theorem, one can construct a confidence
interval with level α for ν0 without estimating the asymptotic
variance as

I1(α) = {ν : l1(ν) ≤ χ2
1,α},

where χ2
1,α denotes the α-th quantile of a chi-square limit with one

degree of freedom.

Liang Peng Estimating bivariate t-copulas via Kendall’s tau

Introduction
Methodology

Simulation
Real Data Analysis

Proofs

Interval estimation for (ρ, ν). Since the Kendall’s tau estimator is
not a linear functional, one can not apply the empirical likelihood
method directly to construct a confidence region for (ρ, ν). Here
we employ the jackknife empirical likelihood method by defining
the jackknife empirical likelihood function as

L2(ρ, ν) = sup{
∏n

i=1(npi ) : p1 ≥ 0, · · · , pn ≥ 0,
∑n

i=1 pi = 1,∑n
i=1 piZi (ν) = 0,

∑n
i=1 pi (nρ̂− (n − 1)ρ̂i ) = ρ}.
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Theorem 3. As n→∞, −2 log L2(ρ0, ν0) converges in
distribution to a chi-square limit with two degrees of freedom,
where (ρ0, ν0)T denotes the true value of (ρ, ν)T .
Based on the above theorem, one can construct a confidence
region with level α for (ρ0, ν0)T without estimating the asymptotic
variance as

I2(α) = {(ρ, ν) : −2 log L2(ρ, ν) ≤ χ2
2,α},

where χ2
2,α denotes the α-th quantile of a chi-square limit with two

degrees of freedom.
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Simulation

We investigate the finite sample behavior of the proposed jackknife
empirical likelihood method for constructing confidence intervals
for ν and compare it with the parametric bootstrap method in
terms of coverage probability.
We employ the R packge ’copula’ to draw 1, 000 random samples
with size n = 200, 500 from the t-copula with ρ = 0.1, 0.5, 0.9 and
ν = 3, 8. For computing the confidence interval based on normal
approximation, we use parametric bootstrap method to obtain the
critical values by resampling 1, 000 samples with size n from the
t-copula with parameters ρ̂ and ν̂. The R package ’emplik’ is
employed to compute the coverage probability of the proposed
jackknife empirical likelihood method.
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(n, ρ, ν) JELM NAM JELM NAM
Level 90% Level 90% Level 95% Level 95%

(200, 0.1, 3) 0.886 0.813 0.935 0.844

(200, 0.5, 3) 0.849 0.771 0.908 0.802

(200, 0.9, 3) 0.878 0.826 0.928 0.849

(200, 0.1, 8) 0.831 0.600 0.909 0.615

(200, 0.5, 8) 0.815 0.594 0.886 0.611

(200, 0.9, 8) 0.837 0.664 0.902 0.680

(500, 0.1, 3) 0.871 0.825 0.923 0.853

(500, 0.5, 3) 0.874 0.838 0.933 0.870

(500, 0.9, 3) 0.876 0.844 0.932 0.869

(500, 0.1, 8) 0.871 0.728 0.939 0.760

(500, 0.5, 8) 0.862 0.747 0.920 0.769

(500, 0.9, 8) 0.892 0.774 0.942 0.797
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Data Analysis

First we fit the bivariate t-copula to the data set on 3283 daily
log-returns of equity for two major Dutch banks, ING and ABN
AMRO Bank, over the period 1991–2003, giving ρ̂ = 0.682 and
ν̂ = 2.617. The empirical likelihood ratio function l1(ν) is plotted
against ν below from 1.501 to 3.5 with step 0.001, which shows
that the proposed jackknife empirical likelihood intervals for ν are
(2.280, 3.042) for level 0.9 and (2.246, 3.129) for level 0.95. The
normal-approximation-based intervals for ν are (2.257, 2.910) for
level 0.9 and (2.195, 2.962) for level 0.95. As we see, the intervals
based on the jackknife empirical likelihood method are slightly
longer and more skewed to the right than those based on the
normal approximation method.
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Figure: Equity. The empirical likelihood ratio l1(ν) is plotted against ν
from 1.501 to 3.5 with step 0.001 for the daily log-returns of equity for
two major Dutch banks (ING and ABN AMRO Bank) over the period
1991–2003.
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Second we fit the t copula to the nonzero losses to building and
content in the Danish fire insurance claims. This data set is
available at www.ma.hw.ac.uk/∼mcneil/, which comprises 2167
fire losses over the period 1980 to 1990. We find that ρ̂ = 0.134
and ν̂ = 9.474. The proposed jackknife empirical likelihood
intervals for ν are (6.830, 16.285) and (6.415, 17.785) for levels 0.9
and 0.95 respectively, and the normal-approximation-based
intervals for ν are (0.978, 12.719) and (−2.242, 13.070) for levels
0.9 and 0.95 respectively. The above negative value is due to some
large values of the bootstrapped estimators of ν. It is clear that
the proposed jackknife empirical likelihood intervals are shorter and
more skewed to the right than the normal approximation based
intervals.

Liang Peng Estimating bivariate t-copulas via Kendall’s tau

Introduction
Methodology

Simulation
Real Data Analysis

Proofs

5 10 15 20

0
2

4
6

8
10

nu

rat
io

Figure: Danish fire losses. The empirical likelihood ratio l1(ν) is plotted
against ν from 5.005 to 20 with step 0.005 for the nonzero losses to
building and content in the Danish fire insurance claims.
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Proof of Theorem 1. Define

g(x , y) = Esign((x − X1)(y − Y1))− τ
= 4{C (F1(x),F2(y))− EC (F1(X1),F2(Y1))}
−2{F1(x)− 1

2} − 2{F2(y)− 1
2},

ψ(x1, y1, x2, y2) = sign((x1 − x2)(y1 − y2))− g(x1, y1)− g(x2, y2).

It follows from the Hoeffding decomposition and results in
Hoeffding (1948) that
√
n{τ̂ − τ}

= 2√
n

∑n
i=1 g(Xi ,Yi ) + 2

√
n

n(n−1)
∑

1≤i<j≤n ψ(Xi ,Yi ,Xj ,Yj)

= 2√
n

∑n
i=1 g(Xi ,Yi ) + op(1),

(6)

which implies (3).
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By the Taylor expansion, we have

0 = 1√
n

∑n
i=1 l(ρ̂, ν̂;Fn1(Xi ),Fn2(Yi ))

= 1√
n

∑n
i=1 l(ρ, ν;Fn1(Xi ),Fn2(Yi ))

+ 1√
n

∑n
i=1{

∂
∂ρ l(ρ, ν;Fn1(Xi ),Fn2(Yi ))}(ρ̂− ρ)

+ 1√
n

∑n
i=1{

∂
∂ν l(ρ, ν;Fn1(Xi ),Fn2(Yi ))}(ν̂ − ν) + op(1)

= 1√
n

∑n
i=1 l(ρ, ν;F1(Xi ),F2(Yi ))

+ 1√
n

∑n
i=1 lu(ρ, ν;F1(Xi ),F2(Yi )){Fn1(Xi )− F1(Xi )}

+ 1√
n

∑n
i=1 lv (ρ, ν;F1(Xi ),F2(Yi )){Fn2(Yi )− F2(Yi )}

+ 1
n

∑n
i=1{

∂
∂ρ l(ρ, ν;F1(Xi ),F2(Yi ))}

√
n(ρ̂− ρ)

+ 1
n

∑n
i=1{

∂
∂ν l(ρ, ν;F1(Xi ),F2(Yi ))}

√
n(ν̂ − ν) + op(1),

(7)
which implies (4). More details can be found in Wang, Peng and
Yang (2013).
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The values of σ21, σ12 and σ22 can be calculated straightforward by
using the Law of Large Numbers, which are

σ21 = cos2(πτ2 )π2{8
∫ 1
0

∫ 1
0 {2C

2(u, v)− 2(u + v)C (u, v) + uv}
dC (u, v) + 5

3 − τ
2 + 2τ},

σ22 = K−2ν (K 2+R1+R2+2R3+2R4+2R5+K 2
ρσ

2
1+2Kρ(L1+L2+L3)),

σ212 = −K−1ν (Kρσ
2
1 + L1 + L2 + L3),

where
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K 2 =

∫ 1

0

∫ 1

0
l(ρ, ν; u, v)2 dC (u, v),

R1 =
∫ 1
0

∫ 1
0

∫ 1
0

∫ 1
0 lu(ρ, ν; u1, v1)lu(ρ, ν; u2, v2)(u1 ∧ u2 − u1u2)

dC (u1, v1)dC (u2, v2),

R2 =
∫ 1
0

∫ 1
0

∫ 1
0

∫ 1
0 lv (ρ, ν; u1, v1)lv (ρ, ν; u2, v2)(v1 ∧ v2 − v1v2)

dC (u1, v1)dC (u2, v2),

R3 =
∫ 1
0

∫ 1
0

∫ 1
0

∫ 1
0 lu(ρ, ν; u1, v1)lv (ρ, ν; u2, v2)(C (u1, v2)− u1v2)

dC (u1, v1)dC (u2, v2),
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R4 =
∫ 1
0

∫ 1
0

∫ 1
0

∫ 1
0 lu(ρ, ν; u1, v1)l(ρ, ν; u2, v2)(I (u2 ≤ u1)− u1)

dC (u1, v1)dC (u2, v2),

R5 =
∫ 1
0

∫ 1
0

∫ 1
0

∫ 1
0 lv (ρ, ν; u1, v1)l(ρ, ν; u2, v2)(I (v2 ≤ v1)− v1)

dC (u1, v1)dC (u2, v2),

L1 = cos(
πτ

2
)π

∫ 1

0

∫ 1

0
l(ρ, ν; u, v){4C (u, v)− 2u − 2v} dC (u, v),

L2 = cos(πτ2 )π
∫ 1
0

∫ 1
0

∫ 1
0

∫ 1
0 lu(ρ, ν; u1, v1){4C (u2, v2)− 2u2 − 2v2}×

{I (u2 ≤ u1)− u1} dC (u1, v1)dC (u2, v2),

and

L3 = cos(πτ2 )π
∫ 1
0

∫ 1
0

∫ 1
0

∫ 1
0 lv (ρ, ν; u1, v1){4C (u2, v2)− 2u2 − 2v2}×

{I (v2 ≤ v1)− v1} dC (u1, v1)dC (u2, v2).
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THANK YOU
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