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Abstract: There are several alternative views on how to determine capital for an insurer whose loss 
liabilities extend for several time periods until settlement. These views differ in their focus on the 
immediate time period (one-year) or runoff (until ultimate loss payment) time frame, and will generally 
produce different amounts of required capital.  

For an insurer whose liabilities and corresponding assets extend over a single time period, Butsic [2013] 
showed how to determine the optimal capital level when the value of the insurance to the policyholder is 
maximized, while providing a fair return to the insurer’s owners. This paper extends those results to 
determine optimal capital when liabilities last for several time periods until settlement. The multi-period 
analysis determines the optimal capital for one period and uses backward induction to find the optimal 
capital for successively longer time frames.  

A key ingredient in this approach is the stochastic process for loss development; another is the choice 
of capital funding strategy, which must dynamically respond to the evolving loss estimate. In addition to 
the variables that affect the optimal one-period capital amount (such as the loss volatility, frictional cost 
of capital and the policyholder risk preferences), I show that the horizon length, the capitalization interval 
(time span between potential capital flows), and the policy term will influence the optimal capital for 
multiple time periods. Institutional and market factors, such as the conservatorship process for insolvent 
insurers and the cost of raising external capital, also play a major role and are incorporated into the 
model.  
   Results show that, for the same annual loss volatility, more capital is required as the time horizon 
increases; essentially, the optimal capital depends on both the annual volatility and the ultimate volatility. 
Also, less capital is needed if capital flows can occur frequently and/or if the policy term is shorter. 
Insurers that are able to more readily raise capital externally will need to carry less of it.  
   This paper applies the same loss-based techniques to develop asset risk capital; depending on the asset 
volatility, the same or less capital is generally needed as the time horizon increases.  

The resulting optimal capital forms the basis for pricing, corporate governance and regulatory 
applications. The paper extends the model to incorporate features, such as present value and risk margins, 
that are necessary for practical applications. Although the primary focus is property-casualty insurance, 
the method can be extended to life and health insurance. In particular, the method used to determine 
capital required for multi-period asset risk will apply to these firms. 
 
Keywords: Stochastic loss process, certainty equivalent, technical insolvency, capitalization interval, 
policy term, risk margin, backward induction, fair-value accounting 
             

1. INTRODUCTION AND SUMMARY  

There is considerable literature on how to determine the appropriate risk-based 
capital for an insurance enterprise. Generally, the analysis applies a particular risk 
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measure (such as VaR or expected policyholder deficit), calibrated to a specific 
valuation level (e.g., VaR at 99.5%) to determine the proper amount of capital. 
However, most of the commonly-used risk measures apply most readily to short-
duration risks, for example, property insurance, where the liabilities are settled within a 
single time period.  Application of these methods is more problematic when addressing 
long-term insurance claims, such as liability, workers compensation and life insurance.  

How to treat long-term, or multi-period, liabilities and assets is the subject of much 
debate in the actuarial and insurance finance literature. For a good, practically-oriented 
discussion of this topic, see Lowe et al [2011]. Essentially there are two camps: one side 
advocates using an annual1 or one-period time horizon, wherein the current capital 
amount must be sufficient to offset default risk based on market values over the 
upcoming year (period) with the market value of liabilities reflecting the cost of capital 
over the remaining runoff horizon. The other side argues that the current capital must 
offset the default over the entire duration (the runoff horizon) required to settle the 
liability. Essentially, the issue is whether capital depends on the loss volatility only for 
the upcoming year, or the ultimate loss volatility. This controversy has gained 
momentum with the upcoming implementation of the Solvency II risk-based capital 
methodology, which uses an annual (single-period) time horizon.2 

As shown in the subsequent analysis here, the problem may be solved by extending 
the one-period model to a longer time frame. I have used the concept of an optimal 
capital strategy to determine the appropriate capital amount for the current period, 
which is the first period of a multi-period liability. For a one-period liability, there is a 
theoretically optimal amount of capital that depends on the insurer’s cost of holding 
capital and the nature of the policyholders’ risk aversion. These results are derived in 
An Economic Basis for Property-Casualty Insurance Risk-Based Capital Measurement 
(Butsic [2013]), which develops the appropriate risk measure (adjusted ruin probability) 
and calibration method (using the frictional cost of capital) for a one-period insurer in 
an equilibrium insurance setting. In fact, the analysis here can be considered as an 
extension to this paper which, for reference, I shorten to EBRM. 

                                            
1 More generally, the period could be shorter than one year, but most applications use the annual time 
frame. In this paper I use the more general concept of time periods. 
2 See the European Parliament Directive [2009]; Article 64. 
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With multi-period risks, we can use the same fundamental assumptions that drive 
optimal capital for a single period. The main point is that, as in a one-period model, the 
optimal capital over several periods depends on the balance between capital costs and 
the amount that the policyholders are willing to pay to reduce the value of default to 
the policyholders. 

This paper shows in general how to address these issues using economic and financial 
principles, and points the way to practical applications.  

Capital in this paper is defined in the general accounting sense as the difference 
between assets and liabilities. For practical applications, capital will need to be defined 
according to a standard accounting convention such as fair value3 or statutory 
accounting. 

Although the analysis primarily develops a model for optimal capital for insurance 
losses, the methodology also applies to long-term asset risk. 

1.1 Summary 
The main result of this paper is that the optimal capital for an insurer with multi-

period losses depends on both the volatility of losses for the current year and the 
volatility of the ultimate loss value. The ultimate loss volatility is a factor because, 
when an insurer becomes insolvent, it generally enters conservatorship and the losses 
will develop further, as if the insurer had remained solvent. This further development 
depends on the ultimate loss volatility. For a constant annual volatility, the optimal 
capital generally increases as the time horizon lengthens, but at a decreasing rate. 

For a multiple-period time horizon, the amount of optimal capital depends on the 
same variables as for an insurer with a single-period horizon: the frictional cost of 
holding capital (primarily the cost of double-taxation), the degree of policyholder risk 
aversion, loss/asset volatility and guaranty fund participation. However, with multiple 
periods, optimal capital also depends on 

                                            
3 The fair value of unpaid claim liabilities is often treated as the best estimate of the unpaid claims plus a 
risk margin.  Sections 2-7 treat liabilities as the best estimate of unpaid claims. The effect of risk margins 
is discussed in Section 8. 



Insurance Risk-Based Capital with a Multi-Period Time Horizon 
 

Draft 10-20-14; For submission to Casualty Actuarial Society Forum 4 

1. The underlying stochastic process for loss development; the horizon length is also 
a random variable.  

2. What happens to unpaid losses when an insolvency occurs. In particular, 
conservatorship for an insolvent insurer has a strong effect. 

3. The capital strategy used by the insurer. The ability to add capital when needed 
is particularly important. 

4. The cost of raising external capital. In the case of some mutual insurers or 
privately-held insurers, the limitation on the ability to raise capital is a key 
factor. 

5. The length of time between capital flows. The shorter this time frame, the less 
capital is needed.  

6. The policy term. More capital is needed for a longer term, since if default occurs 
early in the term, the remaining coverage must be repurchased. 

7. The interest rate. As the interest rate increases, less capital is necessary for 
default that will occur in the future. 

8. The risk margin (or market price of risk) embedded in the premium. This 
amount acts as policyholder-supplied capital and reduces the amount of 
ownership capital needed. 

As identified in items 3 through 5, optimal capital depends on how the insurer raises 
capital, its ability to do so and the cost of doing so. For most insurers, the best feasible 
strategy is to add capital when it will improve policyholder welfare, and withdraw 
capital when it becomes too expensive to carry it. This strategy (called AC in the 
paper) is conditional on the insurer remaining solvent. An alternative strategy (full 
recapitalization, or FR), adds capital even when the insurer is insolvent. Under FR, only 
the current-period loss volatility is considered and thus is implied in the Solvency II 
risk-based capital methodology. However, the FR strategy is not feasible, so the 
Solvency II method will understate risk-based capital for long-horizon losses.  

Interestingly, the optimal capital for asset risk generally does not depend on the 
ultimate volatility of asset values. When an insurer becomes technically insolvent, asset 
risk is virtually eliminated, as a consequence of entering conservatorship (where the 
insurer’s investments are replaced with low-risk securities). If the cost of raising external 
capital is low, the optimal capital will actually decrease as the horizon length increases. 
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1.2 Outline 
The remainder of the paper is summarized below: 

Key Results from the One-Period Model 

Section 2 summarizes the results for a one-period model, showing how the cost of 
holding capital and the policyholder risk preferences will provide an optimal capital 
amount. Coupled with the insurer’s capital strategy, the one-period optimal capital 
amounts will generate optimal capital for longer-duration losses spanning multiple 
periods. 

Multi-Period Model Issues 

Section 3 briefly discusses issues presented in a multi-period model that are not 
applicable to the one-period case. These issues are further addressed in subsequent 
sections. A key concept is the stochastic loss development process, wherein the estimate 
of the ultimate loss fluctuates randomly from period to period, with the current estimate 
being the mean of the ultimate loss distribution; this process determines expected 
default values in future periods. Another important issue is the impact of technical 
insolvency, where a regulator forces an insurer to cease operations when its assets are 
less than its liabilities; in this case, losses continue to develop after the insurer has 
defaulted. I describe capital funding strategies, which are necessary to address the 
period-to-period loss evolution. This section also discusses the distinction between 
ownership capital and policyholder-supplied capital; this issue is not relevant in a one-
period model. 

Basic Multi-period Model 

Section 4 establishes a basic model of an insurer with multiple-period losses for 
liability insurance. I describe characteristics of the loss development stochastic process 
(with an asset process as well), including a parallel certainty-equivalent process needed 
to value the default from the policyholders’ perspective. This section establishes a 
premium model, which allows the calculation of the value of the insurance contract to 
both policyholders and the insurer, and thus the optimum capital amount for both 
parties. I examine the distinction between ownership capital and total capital, which 
also includes policyholder-supplied capital. Also, I discuss capital funding strategies, 
where insurers attempt to add or withdraw capital to maintain an optimal position over 
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time; the strategies vary according to efficiency (value to policyholders) and feasibility. I 
show that the most efficient feasible strategy is where capital is added if the insurer 
remains solvent; this is denoted as AC. 

Optimal Two-period Capital 

Section 5 determines the optimal capital for a two-period model under the AC 
strategy. Here I evaluate the certainty-equivalent value of default under technical 
insolvency, which is a key component of the analysis. This section introduces a 
stochastic loss process with normally distributed incremental development, as well as a 
similar lognormal process. The AC model is enhanced to incorporate an additional cost 
of providing capital from external sources. 

Optimal Capital for More Than Two Periods 

Section 6 extends the two-period model to multiple periods using backward induction. 
This procedure provides optimal initial capital for the various capital strategies. 

Capitalization Interval and Policy Term 

Section 7 examines the effect on optimal capital of the time required to recapitalize, 
or capitalization interval. It also shows how optimal capital depends on the policy term. 

Extensions to the Multi-period Model  

Section 8 extends the basic multi-period model to include features necessary for a 
practical application. I apply a stochastic horizon, where the loss development continues 
for a random length of time. Also, the analysis shows the effect of using present value 
and risk margins. The section concludes with a brief discussion of applying the 
methodology to life insurance. 

Multi-Period Asset Risk 

Section 9 determines optimal capital for asset risk. An important concept used here is 
that when an insurer ceases new business and comes under regulatory control, as in a 
technical insolvency, its assets are converted to essentially risk-free investments and the 
asset risk is essentially eliminated. Another fundamental notion is that the certainty-
equivalent return on risky assets must equal a risk-free rate. 
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2. KEY RESULTS FROM THE ONE-PERIOD MODEL 

This discussion shows how optimum capital is determined in a one-period model. 
More details can be found in EBRM. 

2.1 Certainty Equivalent Losses 
Since a policyholder is presumed to be risk-averse, the perceived value of each 

possible loss, or claim, amount is different from the nominal value. For a policyholder 
facing a random loss, the certainty equivalent (CE) value of the loss is the amount the 
policyholder is willing to pay in exchange for removing the risk of the loss. Let L denote 
the expected value of the nominal loss and p(x) the probability of loss size x. We assume 

that p(x) has a non-zero variance. The expected value of the loss is 
   
L = xp(x)

0

∞

∫ dx . 

The translation from nominal loss amounts to the CE value of the amounts can done 
using an adjusted probability distribution   ̂p(x) : 

 

 
   
L̂ = xp̂(x)dx

0

∞

∫ .   (2.11) 

 
Here,   ̂L  is the CE expected loss, with    L̂ > L . The value of the default to the 

policyholder is called the certainty-equivalent expected default (CED) value and is 
denoted by   D̂ . Its expression is parallel to that of the nominal expected default D: 

 

 
   
D̂ = (x −A)p̂(x)dx

A

∞

∫ .   (2.12) 

Here A is the insurer’s asset amount. We have    D̂ > D ; for asset values significantly 
greater than the mean loss L, the CED can be an extremely high multiple of the 
nominal expected default amount. 

 

2.2 Consumer Value, Capital Costs and Premium 
In purchasing insurance, the policyholder pays a premium  π  in exchange for covering 

the loss. However, the coverage is only partial, since if the insurer becomes insolvent, 
only a portion of a loss (claim) is paid. Thus, the value V of the insurance to the 
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policyholder, or consumer value, equals the CE loss minus the premium minus the CED, 
or  

 

     V = L̂−π− D̂ .  (2.23) 

 
If V > 0, then the policyholder will buy the insurance. 

In the basic model described in EBRM (see the assumptions in Section 4) the only 
costs to the insurer are the loss and the frictional cost of capital (FCC), denoted by z. 
The FCC is primarily income taxes, but may include principal-agent, regulatory 
restriction or other costs. Assuming that the capital cost is strictly proportional to the 
capital amount C, the premium is  

    π = L + zC .  (2.24) 

 
Since adding capital reduces the CED but increases premium (through a higher 

capital cost), there generally will be an optimal level of capital that maximizes V and 
therefore provides the greatest policyholder welfare. By taking the derivative of V with 
respect to the asset amount A, we get the requirement for optimal assets, and therefore 
optimal capital: 

 
    Q̂(A) = z . (2.21) 

 
Here   Q̂(A)  is the default, or ruin, probability under the adjusted probability   ̂p(x) and 

equals the negative derivative of   D̂  with respect to A.  
Meanwhile, the insurer’s owners are fairly compensated for the capital cost through 

the zC component of the premium, so their welfare is also optimized. Since policyholder 
and shareholder welfare are maximized, this theoretical optimal capital level can form 
the basis for pricing, regulation and internal insurer governance. 

Notice that if there were no prospect of the insurer’s default and the cost of capital 
were zero, the consumer value of insurance would be the CE loss minus the expected 
loss, or    L̂−L . Call this amount the risk value. It is the maximum possible value that 
the policyholder could obtain by purchasing insurance. In the basic model, the prospect 
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of default introduces the frictional capital cost and the CE expected default as costs 
that are subtracted from the risk value to produce the net consumer value. A useful 
term for the sum of these two costs is the solvency cost. Since the risk value is not a 
function of the insurer’s assets (the model assumes riskless assets), minimizing the 
solvency cost is equivalent to maximizing the consumer value. 

3. MULTI-PERIOD MODEL ISSUES 

Determining optimal capital for multiple periods presents several challenges not 
evident in the one-period situation. These issues are introduced in subsections 3.1 
through 3.5 and are addressed in greater depth in the subsequent sections 4 through 9. 

3.1 Stochastic Loss Development 
In the one-period case, the loss is initially unknown, but its value is revealed at the 

end of the period. For multiple periods, the loss value may remain unknown for several 
periods. Consequently, in order to establish the necessary capital amount for each period 
(using the accounting identity that capital equals assets minus liabilities), we need to 
estimate the ultimate loss; this assessment is known as the loss reserve. The reserve 
estimate will vary randomly from period to period until the loss is finally settled. The 
stochastic reserve estimates will form the basis for a dynamic capital strategy. 

3.2 Default Definition and Liquidation Management 

In a multi-period model, the loss reserve values are estimates of the ultimate unpaid 
loss liability. If the estimated loss exceeds the value of assets at the end of a period, the 
insurer is deemed to be insolvent, even though it is possible that the reserve may 
subsequently develop downward and there is ultimately no default. This condition is 
called a technical insolvency. If the insurer adds sufficient capital to regain solvency, 
then there is the further possibility that the insurer may yet again become insolvent in 
future periods, either technically or on a cash basis. Thus, multiple insolvencies are 
possible for a recapitalized individual insurer that emerges from insolvency.  

Generally, in the U.S. or Europe, when an insurer becomes technically insolvent, 
regulators transfer its assets and liabilities to a conservator, or receiver, who manages 
them in the interests of the policyholders. This usually means that the assets are 
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invested conservatively in low-risk securities4 and claims are paid to ensure that each 
policyholder gets the same pro-rata share of the assets according to their claim amounts.  

There are several important consequences to receivership. First, the liabilities remain 
“alive” and are allowed to develop further. Second, there is no source of additional 
capital to mitigate the ultimate default amount (however, no capital can be withdrawn 
either, unless the assets become significantly larger than the liabilities). Third, the 
conservative asset portfolio will most likely have a significantly reduced asset risk 
compared to that of the insurer prior to conservatorship. These features profoundly 
affect the multi-period capital analysis, as shown in the subsequent sections. 

3.3 Dynamic Capital Strategy 
In a one-period model the capital is determined once, at the beginning of the period. 

In a multi-period model, capital is also determined initially, but it also must be 
determined at the beginning of each subsequent period. Thus, the capital-setting process 
is a predetermined strategy. This strategy is dynamic: the subsequent capital amounts 
will depend on the values of the assets and of the insurer liabilities as they evolve. Even 
though the capital strategy is dynamic, there will be an optimal starting capital 
amount. Also, for each strategy there will be a distinct expected amount of capital at 
the beginning of each subsequent period.  

3.4 Capital Funding 

Since there is a cost to the insurer for holding capital, the insurer must be 
compensated for this cost. This cost is included in the premium. In a one-period model, 
the premium is paid up front and the loss is paid at the end of the period; there is no 
need to consider subsequent capital contributions. In a multi-period model, the liability 
estimate may increase over time, leaving the insurer’s assets insufficient to adequately 
protect against insolvency. In such an event, the policyholders will be better off if the 
insurer’s shareholders contribute additional capital. However, the insurer will be worse 

                                            
4 For example, the state of California uses an investment pool for its domiciled insurers in liquidation. 
The pool contains only investment grade fixed income securities with duration less than 3 years (see 
California Liquidation Office 2012 Annual Report). New York is more conservative: funds are held in 
short-term mutual funds containing only U.S. Treasury or agency securities with maturities under 5 years 
(see New York Liquidation Bureau 2012 Annual Report). 
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off due to the added capital cost. Nevertheless, if the premium includes the cost of 
additional capital funding, consistent with a particular funding strategy, it is 
economically practical for the insurer to make the capital contribution. Conversely, if 
the loss reserve decreases, it may be mutually beneficial for the insurer to remove some 
capital, consistent with the capital funding strategy.               

For an ongoing insurer, there is an incentive to add capital as needed, since failure to 
do so may jeopardize the ability to acquire new business or renew existing policies. 
However, if technical insolvency occurs, it may not be feasible for the shareholders to 
add capital, since the prospect of a fair return on the capital may be dim. Thus, there 
are some limitations on capital additions. For a true runoff insurer, however, there is no 
incentive to add capital, so capital can only be withdrawn (which may occur if allowed 
by regulators).  

3.5 Capital Definition  
In a multi-period model, the premium will include the expected frictional cost of 

capital, as it does in the one-period case. However, at the end of the first period, only 
the first-period capital cost is expended for the multi-period model, and so the balance 
becomes an asset that is available to pay losses. This premium component thus can be 
considered as policyholder-supplied capital, since serves to mitigate default in exactly the 
same way as the owner-supplied capital in the one-period model. Similarly, if the 
premium contains a provision for the insurer’s cost of bearing risk (a risk margin), that 
amount will also function as capital. Section 4.4 discusses the distinction between 
ownership capital and policyholder-supplied capital. Section 8.3 develops optimal capital 
with a risk margin. 

4. BASIC MULTI-PERIOD MODEL 

This section extends the one-period model to N periods and discusses some important 
differences between the two cases. The basic model is designed to contain a minimal set 
of features that will allow the optimal capital calculation. Other features, which may be 
necessary for practical applications, are discussed in sections 5 through 8. 

The basic multi-period model follows a specific cohort of policies insuring losses that 
occur at the start of the first period and which are settled at the end of the Nth period. 
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The model assumes that the insurer is ongoing, so that other similar policies are added 
at the beginning of the other periods. The basic model does not track these other 
policies; however, they provide an incentive to add more capital to support the basic 
model cohort, if necessary.  

4.1. Model Description and Assumptions 
I start by adopting the basic assumptions of the one-period model, as developed in 

EBRM, and modifying some of them to fit the requirements of the multi-period model, 
as indicated below.  

(1) Policyholders are risk averse and have homogeneous risk preferences. Thus, the 
certainty equivalent value of a particular loss amount is identical for each 
policyholder. 

(2) There are no expenses (administrative costs, commissions, etc.). The only 
relevant costs are the frictional capital costs and the losses. These costs 
determine the premium.   

(3) The cash flows for premium and the initial capital contribution occur at the 
beginning of the first period. The frictional capital cost is expended at the end 
of each period (before the loss is paid).5 The entire loss is paid at the end of 
the last period. Other capital contributions or withdrawals may occur at the 
beginning of each subsequent period, depending on the chosen capital strategy. 

(4) The interest rate is zero. This simplification makes the exposition less 
cluttered (since the nominal values equal present values) and does not affect 
the key results. Section 8.2 provides results with a positive interest rate. 

(5) Losses represent pure gambles (having no correlation with economic factors) 
and have no risk margin. Thus, since the investment return is also zero, the 
expected return on owner-supplied capital is also zero.6 Section 8.3 analyzes 
results with a risk margin. 

(6) The frictional capital cost rate is z ≥ 0. If capital becomes negative (a 
technical insolvency occurs), the FCC is zero. 

                                            
5 I chose this assumption to be consistent with the one-period model in EBRM. For the one-period model, 
this assumption avoids the issue of policyholder-supplied capital vs. ownership capital. Also, if the loss is 
paid before the capital cost is expended, the optimal capital is determined from    Q̂(A) = z / (1 + z) , 

instead of     Q̂(A) = z , which is a simpler result that gives approximately the same optimal capital.  
6 This is a standard financial economics assumption. Including a risk margin (discussed in section 8.3) will 
provide a positive expected return.  
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(7) There is no cost to raising external capital (section 5.4 develops results that 
include this cost). 

(8) There is no guaranty fund or other secondary source of default protection for 
policyholders. The only insolvency protection for policyholders is the assets 
held by the insurer. 

Additionally, we require some assumptions specific to the multi-period case that do 
not apply to a one-period model: 

(1) The ultimate loss is not necessarily known when the policy is issued, but is 
definitely known at the end of the Nth period (or sooner). This situation 
requires an intermediate estimate (the reserve amount) of the ultimate loss at 
each prior period. The reserve value is unbiased: it equals the expected value 
of the ultimate loss. 

(2) The premium includes the expected FCC, since under a dynamic capital 
strategy, the capital amounts in future periods will depend on the random loss 
valuation and thus are also random. The expected capital cost excludes the 
possibility that the insurer becomes insolvent. Section 5.21 discusses this 
further. 

(3) A capital strategy is used, wherein for each possible pair of loss and asset 
values at the end of each period, the insurer will add or withdraw a 
predetermined amount of capital. 

(4) The policy term is one period. Section 7.4 discusses the case where the term is 
longer than a single period. 

 
Since the certainty-equivalent value of losses and related expected default amounts 

are assessed from the perspective of each individual policyholder, we scale the insurer 
model to portray each policyholder’s share of the results. Therefore, it is useful to 
consider the model as representing an insurer with only a single policyholder. 

In the multi-period model with N periods, variables that have a time element are 
generally indexed by a subscript denoting the particular period as time moves forward. 
The index begins at 1 for the first period and ends at N for the last period. Balance 
sheet quantities such as assets and capital are valued at either the beginning or end of 

the period, depending on the context. For example,   C1
 represents capital at the 

beginning of the first period and   A1
 denotes the assets for the first period after the 

capital cost is expended. For simplicity, I drop the subscript for the first period where 
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the situation permits. 

When developing optimal capital with backward induction (section 6) the index 

represents the number of remaining periods: e.g.,   C3
 denotes the initial ownership 

capital for a three-period model. 

Optimal values are represented by a asterisk (e.g.,   C
* ), certainty-equivalent 

quantities by a carat (e.g.,   D̂ ), market values (used in risk margins) by a bar (e.g.,  L )  

and random values by a tilde (e.g.,   C ). 

Note that under this simplified model, it is not necessary to distinguish between 
underwriting risk (the risk arising from losses on premiums yet unearned) and reserve 
risk (the risk arising from development of losses already incurred from prior-written 
premiums). 

4.2 Stochastic Process for Losses and Assets 
To analyze capital requirements, it is useful to categorize property-casualty losses 

into two idealized types, which are approximate versions of real-world processes. The 
first loss type is short-duration, e.g., property, which has no lag between its estimated 
value when incurred and when ultimately settled. Further, the value of a loss incurred 
in one period does not affect the amount in another period. The second type is long-
duration, e.g., liability coverage, where the lag is at least one period, and the value in a 
subsequent period (of a loss incurred in a particular period) will depend on the value in 
the earlier period. 

For analyzing capital under the section 4.1 basic model, short-duration losses are one 
period, since the loss value cannot carry over to a subsequent period. Also, the expected 
value of losses in a subsequent period is independent of losses occurring in an earlier 
period. Since the per policy mean loss (adjusted for inflation) does not change much 
over time, property losses generally follow a stationary stochastic process. Since short-
duration losses under the basic model can be considered one-period,7 determining 
optimal capital is straightforward (see section 2), and so I turn to liability losses.  

                                            
7 An exception is where the policy term is more than one period. This case is discussed in section 7.4. 
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4.21 Long-Duration Loss Stochastic Process 

Under a one-period model, the expected loss is L, which is a component of the 
premium. With a multi-period model, we use the same notation for the initial loss 

estimate. However, there will be intermediate reserve estimates     {L1
,L

2
,,L

N−1
}  at the 

end of the periods 1 through N – 1. The realized value of the ultimate loss is denoted by 

 LN
. Because we have assumed that the reserve estimates are unbiased, each reserve 

value  Lt
 is the mean of the possible values for the next reserve estimate    Lt+1

. In other 

words, the difference    Xt+1
= L

t+1
−L

t
, or the reserve increment, has a zero mean. The 

sequence of reserve estimates is a random walk, which is a type of Markov process.8 In a 
Markov process the future evolution of the value of a variable does not depend on the 
history of the prior values. In other words, conditional on the present reserve value, its 
future and past are independent. There cannot be a correlation between successive 
reserve amounts if the estimates are unbiased. The normal loss model in section 5.31 is 
an example of this stochastic process, which is an additive model since the increments 
are summed to determine successive values. 

An alternative stochastic process that may characterize loss evolution is a 

multiplicative model. Here we define    Yt+1
= L

t+1
/L

t
, which has a mean of 1 for all t. The 

product of the multiplicative random  Yt
 factors and the initial loss estimate L will give 

the ultimate loss value  LN
. The lognormal loss model in section 5.32 is an example of 

this stochastic process. Notice that    ln(Y
t+1

) = ln(L
t+1

)− ln(L
t
) , which is an additive 

random walk with a zero mean as described above. 

We assume that the range of the possible X
t
 values has the same probability 

distribution for all time values t. Also assume that the variance of  Xt
 (denoted by   σ

2 ) 

is constant per period.9 Also assume the same regularity for the lognormal distribution. 

                                            
8 See Bharucha-Reid[1960]. 
9 This assumption can be modified to provide a specific variance for each period, as will be necessary for 
practical applications. The actual distribution may vary according to the elapsed claim duration. For 
example, the long discovery (or IBNR) phase for high-deductible claims will imply a low variance for the 
reserve estimates for the first few years. Scant information regarding the claims arrives over this time 
span, so there is little basis to revise the initial reserve. 
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Notice that the variance of the ultimate loss  LN
 is the sum of the variances of the X

t
 

sequence, or    Nσ
2 . There is no covariance between any of the reserve increments due to 

the memory-less property of the Markov process (a non-zero correlation would imply 

that the prior reserve history could help predict the future reserve values). The  Xt
 

variance exists because the flow of information (positive and negative) regarding the 
ultimate loss value is random. The subsequent estimates of ultimate value are 
determined by information that becomes revealed over time, such as how many claims 
have occurred, the nature of the claims, the legal environment, inflation and so forth. 

4.22 Certainty-Equivalent Stochastic Process 

We also assume that the certainty equivalent loss values evolve according to a 
stochastic process parallel to that of the underlying losses. Generally, the risk value 
embedded in the CE losses is approximately proportional10 to the loss variance. Thus, to 
model the CE loss process, I assume that the relationship is exact. For an additive 
process, the CE loss at the end of N periods is then 

 

     L̂N
= L +aNσ2 ,  (4.221) 

 
where a is a constant that indicates the degree of risk aversion. Therefore, the CE 
expected loss increases each period by the risk value    aσ

2 . Since the CE loss mean 
increases linearly with the time horizon, we can create a parallel CE stochastic process 
by keeping the variance for each period at   σ

2  and adjusting the mean to satisfy 
equation 4.221. 

Although the mean of the evolved loss for each successive period will change, the 
variance does not, so the CE value of the remaining loss will be the new conditional 
unadjusted mean plus    aσ

2  times the number of remaining periods. Notice that equation 
4.221 represents the CE expected loss value with N periods remaining; as the loss 
evolves there will be fewer periods left and the risk value will diminish (it will be zero 
when the loss is settled). 

Appendix A provides a numerical example illustrating the stochastic process for long-
duration losses. It includes both unadjusted and certainty-equivalent results. 
                                            
10 For some distributions and risk aversion combinations, the relationship is exact (such as with 
exponential expected utility). See Panjer et al [1988], page 137. 
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4.23 Asset Stochastic Process 

Asset values over time will also vary according to a stochastic process. Indeed, 
stochastic processes have seen wide use in finance to model both equity (stock) and 
bond values. The well-known Black-Scholes option pricing model uses a lognormal 
stochastic model wherein the log of stock price changes are independent increments. The 
option price is found using an adjusted (risk-neutral) probability distribution,11 which is 
similar to the CE distribution used here. The mean of the adjusted distribution is 
obtained by shifting the mean of the underlying normal distribution. 

As further discussed in section 9, the CE expected asset return for the policyholder 
must equal the risk-free interest rate if the policyholder has the same risk aversion as 
the average investor. Otherwise the CE value of the asset will differ from the value for 
which it can be purchased for certain,12 which, by definition, is contradictory. 

4.3 Premium and Balance Sheet Model  
Following the one-period model, the premium for the multi-period case equals L plus 

the expected capital cost. However, the capital for each period after the initial period 
will be determined by the evolving loss estimate, so it also will be a random variable. 
Consequently, the capital cost component of the premium will be the expected value of 
the sequence of capital costs. Let C denote the ownership capital contributed initially 
(here I drop the subscript 1 for the first period). For a specific capital funding approach, 

under an N-period model, let   
C

i
 be the capital amount at the beginning of the ith 

period.  

I assume that the frictional capital cost is proportional to the ownership capital at 
the rate z. The expected capital cost for all periods is then 

    K = zC + E[ C
2

+ C
3

++ C
N
] . Then the fair premium equals    π = L + K , which has 

the same form as in the one-period case.  

                                            
11 See Hull [2008] (pages 307-309). 
12 To illustrate this, suppose that a risky investment of $100 has an expected return of 10% in one year, 
while a riskless investment will yield 4%. Since the value of the riskless investment is $104 for certain 
after one year, the certainty-equivalent value of the risky investment at one year must also equal $104. 
The CE value now of the future CE value is the future value discounted back at the riskless rate, or $100. 
This equals the amount originally invested. 
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The expected value of the future capital amount or of the capital cost should be 
calculated using unadjusted probabilities, since the capital costs to the insurer do not 
depend on its policyholders’ risk preferences. Also, the insurer is already compensated 
for the risk it bears through the risk margin built into the premium (although the risk 
margin is zero here in the basic model, a more general model, such as in section 8.3, will 
include it). 

This premium model forms the basis for pricing methods that use the present value of 
expected future costs and whose losses have embedded risk margins (see sections 8.2 and 
8.3). The present value of the expected capital costs is determined by discounting them 
at a risk-free rate. 

When the policies are written, the initial assets equal the owner-contributed capital 
plus the premium, or    C + π =C + L + K . These assets are cash in the basic model. The 
liabilities are the expected losses (an obligation to the policyholders) the expected 
capital cost (another third-party obligation13), and the ownership capital, which is the 
residual of assets minus the obligations to other parties. At the end of the first period, 
before the loss is paid, the capital cost is expended, leaving the amount of assets 
available to pay losses, denoted by A, as 

 

    A =C + L + K −zC . (4.31) 

 

4.4 Ownership Capital and Total Capital  
For the basic one-period model, the capital definition is straightforward. At the 

beginning of the period, the insurer’s owners supply a capital amount C, and the 
policyholders supply the premium, equal to L + zC. Since the capital cost amount zC is 
expended before the loss is paid, the amount of assets available to pay the loss is 
 A = L + C.  

For a multi-period model, however, the amount available to pay losses after the first 
period is greater than L + C  by the amount K – zC > 0, which represents the expected 

                                            
13 As discussed in EBRM, essentially this amount will be an income tax liability.  
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capital cost for the remaining periods. Since this additional amount reduces default in 
exactly the same way as the owner-supplied capital, it may be considered as 
policyholder-supplied capital. Therefore it is useful to define the total capital as the 
available assets minus the expected loss, which for the basic model is 

   

   T =C + K −zC .  (4.41) 

 
Notice that for a one-period model, we have T = C , and for two or more periods, 

 T > C.  

It is important to measure the ownership capital consistent with the premium 
determination. Here I use fair-value (also known as mark-to market) accounting, where 
the value of obligations is the amount they would be worth in a fair market exchange.14 
From equation 4.41 it is simple to determine the fair-value capital from the total capital 
and vice-versa. For brevity, I abbreviate ownership capital to OC. 

With a risk margin, discussed in section 8.3, we have a similar situation: the risk 
margin compensates the insurer for bearing risk and is a premium component in 
addition to the expected loss. Like the unexpended expected capital cost, it provides 
additional default protection. However, in fair-value accounting, the risk margin is not 
considered as OC. 

For the subsequent sections, I present most results using the total capital definition. 
Where appropriate, I show the OC for comparison.  

4.5 Capital Funding Strategies 

In order to determine the expected capital cost, we need to know how much capital 
will be used for each period. As discussed in section 3.4, the amount will depend on the 
loss amount at the end of the prior period: if the amount is large, it may be necessary to 
add capital; if the amount is small enough, capital might be withdrawn. Define  a 

                                            
14 An important property of fair value accounting is that, if the product is fairly priced (so that its 
components are priced at market values), there is no profit generated when the product or service is sold. 
Instead, the profit is earned smoothly over time as the firm’s costs of production or service provision are 
amortized. For an insurer, this means that the profit will emerge as the risk of loss is borne. 
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capital funding strategy as a set of rules that assigns a specific (but not necessarily 
unique) amount of capital to the beginning of each period, corresponding to each 
possible loss value at the end of the prior period.  

There are several basic capital funding strategies that an insurer might use. I  
describe the most relevant ones below, starting from the least to the most dynamic 
method. 

Fixed Assets (FA): under this approach, the insurer’s owners supply an initial capital 
amount, with no subsequent capital flows until the losses are fully settled. Thus, the 
initial assets remain constant until the losses are paid. Note that the capital amount will 
vary over time, since loss estimates will fluctuate and the capital equals assets minus 
liabilities. This method is used in Lowe et al [2011] to determine capital for a runoff 
capital model. Although it is viable for a true runoff insurer, it will not be for an 
ongoing insurer, whose capital level must respond dynamically to the level of its loss 
liabilities. For example, if an insurer’s losses develop favorably, causing its capital level 
to increase above a reasonable solvency level, then the insurer will usually reduce its 
capital amount. 

Capital Withdrawal Only (CW): with this strategy, capital is withdrawn if the asset 
level becomes high relative to the losses (and therefore satisfying a particular target 
leverage ratio). A common method for withdrawing capital is through dividends to 
shareholders. 15 However, no capital is added if assets become lower than the target 
level. Except possibly for some mutual insurers, this method also does not represent 
actual practice, where, within limits, insurers will add capital if its leverage ratio drops 
below the norm. 

Add Capital if Solvent (AC): here, capital is withdrawn if a particular solvency level 
is reached, and capital is added if assets are below the solvency level. However, if the 
insurer becomes technically insolvent, then no capital is added. In this event, the insurer 
usually is taken over by a conservator. The incentive for shareholders to fund capital 
additions comes from the prospect of adding new business, which is difficult to 
accomplish without adequate capital. Note that a threshold below insolvency might be 

                                            
15 For a mutual insurer, the dividends will go to policyholders, who are the insurer’s owners and therefore 
serve as shareholders. A mutual insurer’s dividends can also be used as part of its pricing strategy. 
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used in the event that shareholders consider the franchise value of the insurer to be 
valuable enough. However, the results of this assumption would be analytically similar 
to using a solvency threshold. The main point here is that there is an upper limit 
beyond which the capital is no longer added. 

A variation of the AC strategy, discussed in section 5.4, is where there is a cost to 
raising capital externally. I have labeled this strategy as ACR. 

Full Recapitalization (FR): this approach is similar to AC, but the insurer, even if 
technically insolvent, will add sufficient capital to regain the target solvency level. 
However, in order to provide an adequate incentive for the shareholders to provide 
capital if the insurer is insolvent, the policyholders accept a cash settlement of their 
claims equal to the assets. The insurer (or a different insurer) then agrees to insure the 
loss liability and the policyholders pay a new premium for the reinstated coverage. The 
insurer’s owners then provide adequate capital for the insurance. This transaction, in 
effect, converts the technical insolvency into a cash or “hard” insolvency. Thus, it is 
possible for the insurer to default multiple times before the loss is settled. As discussed 
in section 5.2, the FR approach is theoretically superior to the other three methods in 
that it provides the highest consumer value for the insurance coverage. However, it is 
not practically feasible: normally, the policyholders will enter receivership rather than 
take back their liabilities and insure them again with a different insurer.16 

Other strategies, such as only adding capital, are possible. However, I have included 
only the strategies that are used in practice or which illustrate important concepts. 

Let    Tt+1
* (L

t
)  represent the required total capital amount at the beginning of period 

 t + 1 given that the value of the loss at the end of period t is  Lt
. Thus the required 

assets at the beginning of period t + 1 are    Lt
+T

t+1
* (L

t
) , and the indicated capital flow 

(i.e., addition or withdrawal) is the required assets minus the prior-period assets: 

 

                                            
16 One huge impediment to practically applying the FR method is that the insurer and the policyholders 
may have different opinions on the value of the loss reserve estimate. Another impediment is that this 
capital funding method also requires either that policyholders without claims contribute enough to pay for 
their possible future incurred-but-not-reported (IBNR) claims or for the IBNR reserve to be divided 
among the existing claimants. 
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     CF
t

= L
t

+T
t+1
* (L

t
)−A

t
. (4.51) 

 
The above four capital funding strategies, plus the ACR variant, can be characterized 

by the regions of  Lt
 for which the indicated capital flow    CF

t+1
 is permitted. The first 

region is , where the insurer is technically insolvent. The second is  

   [At
−T

t+1
* (L

t
)]< L

t
< A

t
, where the insurer is solvent and capital can either remain the 

same17 or increase if permitted. The third is    Lt
< [A

t
−T

t+1
* (L

t
)] , where capital is 

withdrawn if permitted. 

To illustrate, assume that the required total capital is 600 and is independent of the 
loss value (i.e., it depends only on the variance, as under the normal distribution). Prior 
assets are 1400, so there is potentially 800 in excess assets. Region 1 has losses exceeding 
1400, region 2 has losses between 800 and 1400 and Region 3 contains losses less than 
800. For region 1, capital is added only for FR. For region 2, capital is added for AC 
and FR. For region 3, capital is withdrawn for all funding strategies except FA.  

Table 4.51 summarizes the capital flows permitted by the different capital strategies. 
A minus indicates a withdrawal, a plus represents an addition and a zero indicates that 
capital can remain the same.  

 
Table 4.51 

Permissible Capital Flows by Capital Strategy 
 

 FA CW AC FR 
Region 1 0 0 0 

 CF
t
 (+) 

Region 2 0 0 
 CF

t
 (0, +)  CF

t
 (0, +) 

Region 3 0  (–)  (–)  CF
t
 (–) 

 
Each of these strategies may have a different expected capital cost and therefore the 

premium will depend on the strategy used. Notice that after the initial capital   C1
 is 

                                            
17 Under the ACR strategy and the FR strategy with a capital-raising cost, there may be a sub-region of 
Region 2, bordering on Region 3, where capital remains the same. As shown in section 5.4, due to the cost 
of raising capital, it will be sub-optimal to add capital in this region, and also sub-optimal to withdraw it. 

  At
< L

t

 CF
t  CF

t
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established, the chosen strategy will produce a unique sequence of subsequent capital 
amounts corresponding to the sequence of loss estimates. 

Since the insurer is fairly compensated up front for its capital costs, the capital 
suppliers (shareholders) will provide whatever capital amount (both for initial and 
subsequent periods) is desired by the policyholders. This also means that the investors 
are indifferent to the capital strategy desired by the policyholders. Therefore, for each 
capital strategy, we can determine the initial capital amount that maximizes the 
policyholder’s consumer value. Then the strategy with highest consumer value (or the 
lowest solvency cost) is the optimal strategy and can be used to determine capital for 
similar types of insurance. 

4.6 Efficiency and Feasibility of Capital Funding Strategies 
Assume a two-period model and that initial assets for each strategy are fixed at   A1

. 

At the end of the first period, whatever the loss estimate   L1
, there is a single period 

remaining. We already know how to find the optimal capital for one period. Defining 
the required total capital in section 4.5 as the optimal capital, the optimal capital for 

the beginning of period 2 is   T2
*(L

1
) . Thus, if the actual capital   T1

 exceeds   T2
*(L

1
) , the 

additional capital cost (from carrying the capital into the second period) will be greater 
than the reduction in the CE expected default value for the second period (by definition 
of the optimal capital), so policyholders will gain by a capital withdrawal to attain 
optimal capital. Note that this situation occurs in region 3 of Table 4.51. Consequently, 
CW is a superior strategy to FA, which we can represent as CW > FA. 

A similar argument shows that AC > CW. If the loss estimate is between initial 

assets minus   T2
*(L

1
)  and initial assets (region 2), increasing capital will increase the 

capital cost less than it changes the CED value. In parallel fashion, we have FR > AC. 

However, as discussed in section 4.5, FR is not feasible in practice. AC is feasible for 
most insurers  and CW, although feasible, is less efficient than AC. So it is not a good 
choice unless it is not possible to raise capital externally. Therefore it is important to 
determine optimal capital under the AC strategy. Nevertheless, it is informative to 
compare results between the different strategies. In particular, the FR strategy provides 
an important baseline, since it produces the highest consumer value and thus 
theoretically is the most efficient strategy. It also has the important feature that it 



Insurance Risk-Based Capital with a Multi-Period Time Horizon 
 

Draft 10-20-14; For submission to Casualty Actuarial Society Forum 24 

converts a multi-period model into a series of one-period models.  

Because of the single-period conversion property of the FR strategy, the required 
adjusted probability distributions can be analytically tractable, and it is relatively easy 
to calculate the optimal capital for the start of each period. This is usually not the case 
for the AC and CW strategies. 

5. OPTIMAL TWO-PERIOD CAPITAL 

In order to determine multi-period optimal capital, it is necessary to start with one 
period and extend the result to two periods. From that point, we extend the result to 
additional periods. In the two-period exercise, we gain valuable insight regarding multi-
period capital dynamics. The two-period results are readily extended to additional 
periods in section 6 using backward induction. The results here in section 5 use an 
example with a normal or lognormal stochastic loss process. However, I also describe the 
general method to derive optimal capital for other stochastic processes. 

First, I address the simple case where there is no cost to raising capital from external 
sources. Then, in section 5.4, I introduce a cost of raising capital and show how this 
changes the AC and FR optimal capital. 

5.1 Expected Default with the AC Strategy 
An important constraint in modeling capital for multi-period losses is that a technical 

insolvency normally forces an insurer into conservatorship. From section 3.2, this event 
means that losses will continue to develop while assets remain fixed until the losses are 
settled. Here I assume that the insurer enters conservatorship immediately when the 
technical insolvency occurs at the end of a particular period.  

Conservatorship adds another dimension to the CE expected default calculation that 
is absent for a one-period model. To illustrate this, I approximate a normal stochastic 
loss process using a discrete probability distribution for the independent loss increments. 
This numerical example is shown in Appendix A.  

From section 2, the CED for a one-period loss is denoted by   D̂ . Define   Ĝ  as the 
unconditional ultimate CED for an insurer entering technical insolvency at the end of 

the current, or first period. For a discrete loss process, such as used here, let  xi
 for 
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 denote each possible value of the first-period loss   L1
 that exceeds initial 

assets. Let  represent the certainty equivalent probability that  xi
 occurs and 

  D̂2
(x

i
) the CE expected second-period default given  xi

. The CE expected default due to 

a technical insolvency is therefore 

 
      Ĝ = p̂

1
(x

1
)D̂

2
(x

1
)+ p̂

2
(x

2
)D̂

2
(x

2
)++ p̂

n
(x

n
)D̂2(xn

) .  (5.11) 

 

Using this framework, in the above numerical example (see Appendix A) we have  

  x1
 = 1350,   x2

= 1400,   p̂(x1
)  = 0.00520,   p̂(x2

) = 0.00054,   D̂2
(x

1
)  = 152.59 and   D̂2

(x
2
) =  

200.72. Thus,   Ĝ  = 0.9029 = 0.00054(200.72) + 0.00520(152.59). 

 Assuming a non-zero variance of loss development beyond the first period, the value 
of   Ĝ  (0.9029 in the example) will always be greater than that of   D̂ (0.3144 in the 
example), as discussed in Appendix A. Therefore, the optimal capital will also be greater 
under the AC strategy than for the FR strategy. 

Observe also that   Ĝ  depends on the variance of loss development beyond the first 
period (i.e., the ultimate variance), while   D̂  only depends on volatility during the first 
period. 

5.2 Optimal Two-period AC Capital  
A particular value of initial assets will establish the assets A available to pay the loss 

at the end of the first period (equation 4.31) this amount will thus uniquely determine 
the CE expected default for the first period as discussed in section 5.1. The amount A 
will also uniquely determine the CED for the second period since the capital strategy is 
predetermined. The total CE expected default for the insurer is the sum of the CED 
values for the first and second periods.  

From section 5.1,   Ĝ  is the CE expected default for the first period (under technical 
insolvency). For a continuous distribution of losses, with x denoting the first period loss 
value, the equivalent of equation 5.11 is 

 

 
   
Ĝ = p̂(x)D̂

2A

∞

∫ (x)dx . (5.211) 

 

    i = 1,,n

  p̂(xi
)
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If the insurer remains solvent at the end of the first period, there is one period 
remaining: it can become insolvent at the end of the second period. However, from 
section 2, for each loss value there is an optimal amount of capital and a corresponding 
optimal CED amount, represented by   D̂

*(x) . The insurer will add or withdraw capital 
to reach the optimal beginning second-period capital. The unconditional expected 
default in the second period if the insurer stays solvent for the first period is then 

 

 
   
Ĥ = p̂(x)D̂*(x)dx

0

A

∫ . (5.212) 

In words,   Ĥ , the CED for the second period, is the sum of the optimal one-period 
CED for each first-period loss value less than the asset amount, weighted by the CE 
probability of the loss value. Observe that the limits of integration span loss amounts 
from 0 to A, while the   Ĝ  limits span amounts greater than A. Consequently, the 
insurer’s total CE expected default for both periods is    Ĝ + Ĥ . 

From section 4.3, the premium for a multi-period loss coverage is    π = L + K , where 
K is the expected total capital cost for all periods. For two periods, the expected 
amount of ownership capital used is the initial first period OC (a fixed amount) plus the 
expected second-period initial OC (a random amount determined by the first-period 

loss). Let   C2
*(x) be the optimal second-period initial OC given that    L1

= x . If the 

insurer is technically insolvent after one period (i.e.,    L1
> A ), there is no capital used at 

the start of second period. If the insurer remains solvent, under the AC strategy the 
second-period initial OC is the optimal OC for a one-period insurer with expected loss 

  L1
. Therefore we have 

 

  
   
K = zC + z p(x)

0

∞

∫ C
2
*(x)dx . (5.213) 

 

Here p(x) is the unadjusted probability of loss, since we assume that the insurer will 
incorporate the actual expected amount of capital into the premium.18  The consumer 

                                            
18 The capital is not adjusted for risk in the basic model, since the expected return to the insurer is zero.  
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value of the insurance transaction is then . The optimal initial 
available asset value is found by maximizing V, or alternatively, minimizing the 
solvency cost 

 

    S = Ĝ + Ĥ + K . (5.214) 

 
Because   Ĝ  is not analytically tractable for important probability distributions such 

as the normal, we need to use numerical approximation methods to find the optimal 
capital in these cases. Once the optimal assets are found, we use equation 4.31 to 
determine the optimal capital. Section 5.3 outlines an approach for the normal and 
lognormal stochastic processes. 

For the FR strategy, the insurer is recapitalized at the end of the first period to the 
optimal second-period amount. So, viewed from the beginning of the first period, the 
solvency cost for the second-period is the optimal amount for that period as if we had 
just begun that period. Therefore, the initial capital for the first period is independent of 
the second period loss distribution, and depends only on the potential loss values for the 
first period.  

Section 5.1 showed that, for a given initial asset level, the CE expected default for 
the AC strategy is higher than that for the FR strategy. This implies that the optimal 
initial total capital for the AC strategy is higher than for the FR strategy, which is the 
theoretically most efficient strategy. This result is reflected in the section 5.3 numerical 
examples with the normal and lognormal stochastic loss processes.  

To prove this result, assume that we use an AC strategy, but the initial total capital 
is the optimal total capital for an FR strategy. The AC certainty-equivalent default   Ĝ  
is greater than the optimal CED under FR. Also, the derivative    ∂Ĝ /∂A  is a weighted 
average of the   Q̂  values for losses greater than A. Each of the component   Q̂  values in 
the weighted average is higher than z, so adding capital at the margin will reduce   Ĝ  
more than it will increase the capital cost. Consequently, the optimal AC total capital 
will be greater than the optimal FR total capital19 and the optimal AC solvency cost 

                                            
19 Since the premium contains the expected capital cost for both periods, the optimal first-period FV 
capital equals the optimal capital for a one-period model, less the expected capital cost for the second 

    V = L̂−π−Ĝ− Ĥ
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will be greater as well. 

5.3 Optimal Two-period Capital for Normal Stochastic Processes 
Because it is meant to provide a simple illustration of the effects of capital strategies, 

the example described in section 5.1 and evaluated numerically in Appendix A, is highly 
unrealistic. The present section primarily uses the normal stochastic process (from 
section 4.2) whose period-ending loss distribution is normal. This distribution is 
continuous, and more closely represents actual loss development. I also discuss the 
lognormal loss process, which although multiplicative, gives similar results. The results 
here are intended to illustrate the general method for determining optimal capital; a 
practical application may involve more complex modeling.  

A useful technique for creating an adjusted probability distribution that satisfies the 
requirements for certainty-equivalent values is to shift the mean of the unadjusted 
distribution,20 in proportion to a risk-aversion parameter, as outlined in section 4.2. The 
shifted mean becomes the CE expected loss for the evolving loss until ultimate 
settlement. As the variance of the developing loss increases with additional time periods 
(viewed from the beginning of the first period), the CE value of the loss estimate will 
grow, in proportion to the cumulative loss variance.  

With a normal loss process, the optimal capital and CED for one period are constants 
independent of the expected loss (but are a function of the standard deviation). 
However, for a lognormal process, the one-period optimal capital and CED are 
proportional to the expected loss. These properties facilitate the calculation of optimal 
capital for two or more periods. 

5.31 Optimal Two-period Capital for the Normal Process 

Appendix A develops a numerical example to illustrate optimal capital under the 
normal stochastic loss process. This example is further used to illustrate results for 

                                                                                                                    
period. Essentially, in this case, compared to the one-period model, the policyholder has prepaid the 
second-period capital cost, so the optimal initial capital is less than in the one-period model by the 
amount of the prepayment.  
20 The Black-Scholes option pricing model can be derived using a mean shift. Here the expected future 
value of the underlying asset under the risk-neutral distribution has a shifted mean equal to the initial 
asset value and not its true expectation. See Panjer [1998], page 168. Using a mean shift for the lognormal 
distribution implies a power utility function. 



Insurance Risk-Based Capital with a Multi-Period Time Horizon 
 

Draft 10-20-14; For submission to Casualty Actuarial Society Forum 29 

subsequent sections of the paper. 

The example uses a two-period normal stochastic loss process with a mean of 1000 
and variance of the loss increment equal to 1002 for each period. The CE of the expected 
loss after one period is 1100 and the risk value (the CE of the loss minus its expected 
value) at each development stage is strictly proportional to the cumulative variance as 
in section 4.22. Thus, the CE value of the ultimate loss at the end of the second period 
is 1200. At each stage of loss development the CE loss is normally distributed with the 
same variance as the unadjusted distribution, but with the adjusted mean equal to the 
CE value of the evolved loss. 

The frictional capital cost is z = 2%. The optimal one-period total capital is 305.37 
and the optimal two-period initial total capital is 357.67.  

 Table 5.311 summarizes the optimal AC results. Here I compare the optimal two-
period AC strategy with that of the optimal FR strategy. The table also shows results 
for the AC strategy using the optimal FR initial total capital as the initial capital for 
the AC strategy. 

 

Table 5.311 
Optimal AC and FR Strategy Comparison 

Normal Stochastic Process Example 
 

Strategy Initial 
Total 
Capital 

1st Period 
CE Default 
Probability 

1st Period 
CED 

2nd Period 
CED 

1st Period 

Capital 
Cost  

2nd Period 
Capital 
Cost 

Solvency 
Cost  

FR  
Optimal 

305.37 0.0200 0.7343 0.7343 5.9852 6.1075 13.5613 

AC 
Using FR 

305.37 0.0200 2.8274 0.7196 5.9852 6.1075 15.6398 

AC 
Optimal 

357.67 0.0050 0.6829 0.7307 7.0312 6.1075 14.5507 

 

Notice that the optimal solvency cost for the AC strategy has a lower CED (1.4136) 
than does the FR strategy (1.4686). However, the AC capital cost is larger, giving a 
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higher AC optimal solvency cost. 

5.32 Optimal Two-period Capital for the Lognormal Distribution 

To further illustrate the optimal AC capital, I turn to a lognormal stochastic process, 
which is more realistic than a normal model. Loss development tends to follow claims 
inflation, which is a multiplicative process, rather than an additive one. However, for 
the lognormal distribution, the logarithms of the loss values are normally distributed. 
The lognormal distribution has been used by several authors (see Wacek [2007] and Han 
and Goa [2008]) to analyze the variability of loss reserves. To apply the lognormal 
model, I have used a mean shift (as in the normal case) to determine certainty 
equivalent values. Also, the coefficient of variation for each period remains constant as 
the loss amount varies (rather than the standard deviation, as in the normal model). 
Notice that for the lognormal model, the optimal second period capital is proportional to 
the ending first period loss (under the normal model, the optimal second period capital 
is a constant independent of the first period loss amount). The CE expected default is 
also proportional to the ending first period loss. 

We use the same parameters as in the above normal example: the mean loss is 1000, 
the standard deviation of loss is 100 per period and the capital cost rate is 2%. The 
calculation is parallel to that in section 5.31, and the results are similar. The CE 
expected loss is proportional to the variance, so the CE expected ultimate loss is also 
1200. Table 5.321 compares the optimal AC and FR results for both the normal and 
lognormal examples. 

 

Table 5.321 
Optimal AC Strategy Comparison 

Two-Period Model 
Normal and Lognormal Stochastic Process Examples 

 

 Initial Total Capital Capital Cost CED Solvency Cost 

Normal  357.67 13.14 1.42 14.56 

Lognormal  396.44 14.79 2.00 16.79 
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As shown in section 6, the similarity between the normal and lognormal processes is 
maintained as the time horizon is extended beyond two periods. 

5.4 Two-Period AC Model with Cost of Raising Capital 
An ongoing insurer usually manages its capital flows by having positive earnings, so 

that most of the time it will withdraw capital (usually as distributions to owners) to 
maintain the desired capital level. The positive earnings represent internally generated 
capital. If earnings are negative, it may be necessary to raise ownership capital 
externally, through issuance of bonds or equity capital. The initial basic model assumed 
that the cost of raising capital externally is zero. This is not realistic, since it is 
generally considered that there is a positive cost of raising external capital for businesses 
(see Myers and Majluf [1984]), including insurers (see Harrington and Niehaus [2002]). 

A portion of this cost is due to the administrative expense of the capital issuance, 
such as investment bank fees. The other part of the cost is due to signaling, where if an 
insurer needs additional capital due to negative earnings, investors may believe that the 
management is poor. Thus, the capital suppliers will require a high return on the capital 
provided and the value of the company to existing shareholders will be diluted. This is 
especially the case when most other insurers do not require additional capital.21  

5.41 Linear Model for Cost of Raising Capital 

To model the cost of raising capital (abbreviated by CRC), assume that the cost is a 
rate w times the amount of capital raised.22 We continue to assume that no capital is 
raised if the insurer is technically insolvent. Also assume that the insurer is already in 
business, so that its first-period capital is not raised externally.23  

For a two-period model, at the end of the first period, there is one period remaining. 

                                            
21 In the event of an industry-wide catastrophe or pricing cycle downturn, the signaling effect may not be 
significant. In fact, the prospect of near-term increased insurance prices can spur investment in the 
property-casualty industry. 
22 An alternative formulation is to assume that the cost of raising capital increases as the insurer nears 
insolvency, but this will be more difficult to model. 
23 The one-period model in EBRM implicitly assumed that there was no cost of raising capital. A solvent 
ongoing insurer with one-period losses will need to raise capital (to the optimal level for the next group of 
policyholders) if the ending loss amount is large enough. This effect will change the optimal initial capital 
slightly.  
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If it is not necessary to raise capital, the optimal capital for the beginning of the second 
period is determined by equation 2.2. However, if capital is raised at that point, there is 
an additional capital cost w to the insurer beyond z, the cost of holding capital.  

Let  CR
 represent the initial second-period ownership capital after having raised 

capital and  CE
 the ending first period OC. Thus, the amount of capital raised is  

   CR
−C

1
. The total capital cost in the second period is then    zCR

+w(C
R
−C

E
). 

 Because the marginal amount of capital raised carries a frictional cost of z + w, 
following the section 2.2 analysis, the optimal second period capital is determined by 

  

    Q̂(A
2
) = z +w ,  (5.411) 

 

where A2 is the second-period assets. Since we assume that w is positive, the optimal 
second-period capital under CRC is less than that if there were no CRC: since new 
capital raised is expensive under CRC, the insurer will use less of it; the policyholder is 
satisfied, having achieved the optimal balance of price and security. Denote the optimal 

second-period OC, given that capital is raised at the end of the first period, by   CR
* . 

5.42 Optimal Two-Period Capital Under CRC 

Under the dynamic AC strategy, the additional cost under CRC is not borne if the 

first-period loss estimate   L1
 is low enough so that the ending first-period OC is higher 

than   C
*,  the optimal one-period OC amount for the second period given that no capital 

is raised. The capital flows depend on four distinct regions based on the first-period 
ending OC amount CE . Thus, we expand Table 4.51 by splitting region 2 into two sub-
regions. Table 5.421 shows the capital flows by region: 
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Table 5.421 
Capital Flows by Region 

Two-Period AC Strategy with Cost of Raising Capital 
 

Region Capital Carried 
Forward 

Capital 

 Raised  

Capital  

Withdrawn  

1:       CE
< 0   0 0 0 

2a:     0 <C
E

<C
R
*   CE

    CR
* −C

E
 0 

2b:     CR
* <C

E
<C *   CE

 0 0 

3:      C
* <C

E
   C

*  0 
   CE
−C *  

 

In region 1, the insurer is technically insolvent, so there are no capital flows. In 
region 2a, the ending OC is lower than the optimal capital needed if raising capital, so 

capital is added to reach   CR
* . In region 2b, the ending capital is greater than   CR

* , so no 

capital is raised. The ending capital is also lower than   C
* , so none can be withdrawn 

either. In region 3 the ending capital is more than the optimal second-period capital, so 
the excess is withdrawn.  

Denote the region 2a expected amount of capital carried forward by  EF
a
 . We have 

   
EF

a
= (x −A

A−CR
*

A

∫ )p(x)dx , where x is the ending first-period loss value and p(x) is the 

unadjusted probability of x occurring. This integral equals 

 

    EF
a

= D(A−C
R
* )−D(A)−C

R
*Q(A−C

R
* ) , (5.421) 

 
where the expected default and the default probability values are determined by 
unadjusted probabilities. The expected amount of capital carried forward for region 2b 
is developed in a similar fashion, and equals  

 

    EF
b

= D(A−C *)−D(A−C
R
* )−C *Q(A−C *)+C

R
*Q(A−C

R
* ) .  (5.422) 
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The calculation of the optimal initial capital under the AC with a CRC strategy can 

be illustrated by extending the section 5.31 normal example. Appendix A shows this 
analysis.  

Figure 5.421 compares the optimal initial, expected second-period and average total 
capital obtained by varying w in this example from 0 to 5%. 

 

Figure 5.421 
Optimal Total Capital Amount by Cost of Raising Capital 

Two-Period AC Strategy  
Normal Example 

 

 

 

Notice that increasing the CRC raises the initial first-period optimal total capital and 
lowers the expected second-period optimal capital. The second-period capital is 
diminished because the second-period capital cost goes up due to the CRC and the 
insurer (on behalf of the policyholder) will use less of it. The initial capital increases 
because the insurer will avoid some of the high second-period cost by having a higher 
initial capital and carrying more of it into the second period. Also notice that increasing 
the CRC also raises the average amount of capital over both periods. 

The capital raising cost will vary by insurer, and is likely to be lower for established 
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insurers with better access to the capital markets. Thus, the CRC is another variable to 
be considered when assessing risk-based capital.24 

To distinguish an AC capital strategy with a positive cost of raising capital from one 
with a zero cost, I abbreviate the CRC version to ACR. 

5.5 Insurers with Limited Ability to Raise Capital 
Besides depending on the cost of raising capital, the optimal capital amount also 

depends on the ability of insurers to raise capital. It is well-known that the 
organizational form of insurers dictates how they may raise capital (see Harrington and 
Niehaus [2002] and Cummins and Danzon [1997]). In particular, depending on the 
details of their structure, mutual insurers may have difficulty raising capital externally.25 
In the case where an insurer cannot raise external capital, the best capital strategy is 
capital withdrawal (CW). Note however, that this strategy will represent an upper limit 
to optimal capital for a mutual insurer, since the insurer can raise additional capital 
internally by charging its policyholders a higher premium.26 

Under CW, all capital flows (except for the initial capitalization) are withdrawals; 
capital increases arise from positive earnings. Using the section 5.4 example, the optimal 
initial CW total capital amount is 481.29, with an expected second-period optimal 
capital of 305.37 and average over the two periods of 393.33. The solvency cost of this 
optimum position is 17.30. For comparison, the solvency cost of the section 5.42 AC 
strategy with a 3% CRC is 15.38. 

Harrington and Niehaus show that mutual insurers carry more capital than stock 
insurers having the same risk. This result supports the analysis presented here. 

Although the solvency cost (and hence the consumer value) for the mutual insurer is 

                                            
24  With a CRC, even under a FR strategy the optimal initial capital will be larger than without the 
CRC, since capital must be stockpiled early to avoid the cost of subsequently raising it. Thus, the initial 
capital depends on the volatility of future losses, not just the behavior of current period losses. 
25 Some mutual insurers have issued surplus notes, which are similar to equity in terms of capital 
structure, but are a type of risky bond to investors. According to A.M. Best [2003], the major issuers of 
surplus notes were usually large insurers with more access to capital markets, while small or mid-size 
insurers could only issue surplus notes in relatively amounts with short maturity.  
26 However, this method is limited since the policyholders will tend to migrate to other insurers if the 
premium is too high.  
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worse than for the section 5.4 insurer, the policyholder is not necessarily worse off. A 
mutual policyholder is also an owner of the insurer and receives dividends if the mutual 
is profitable. These distributions are not taxable at the personal income level. However, 
a similar policyholder of a stock insurer with an equivalent stake in that insurer would 
be subject to income taxes on the capital distributions. This benefit increases the 
consumer value of the mutual insurance purchase. To illustrate, suppose that the 
personal income tax rate on the capital distributions is 15% and the expected return on 
capital is 8%. The average ownership capital for the section 5.4 stock insurer (with  
w = 3%) is 332.60. Thus, the expected return to the policy/equity holder is 26.61 = 
0.08(332.60). The tax on this amount is 3.99 = 0.15(26.61). The stock policyholder’s 
consumer value after the personal income tax is the risk value minus the solvency cost 
minus the income tax: 180.63 = 200.00 – 15.38 – 3.99. The mutual policyholder’s 
consumer value, with no personal income tax, is higher: 182.70 = 200.00 – 17.30. 

To the extent that regulatory capital requirements are related to the optimal capital 
that insurers might carry, then the analysis here suggests that risk-based capital should 
be higher for mutual insurers than for stock insurers having the same risk. 

6. OPTIMAL CAPITAL FOR MORE THAN TWO PERIODS 

This section determines optimal capital for multiple periods by extending the two-
period model for the capital strategies using the backward induction method. Here I 
outline the method generally and apply it to AC and ACR strategies. 

6.1 General Backward Induction Method 
The backward induction method determines a sequence of optimal actions or results 

by starting from the end of a problem with discrete stages and working backwards in 
time, to the beginning of the problem. It uses the output of each prior stage to form an 
optimal action or result based on the information available for the particular stage. This 
course proceeds backwards until one has determined the best action or result for every 
possible situation at every point in time. Backward induction is used extensively in 
dynamic programming and game theory.27 

                                            
27 For example, see Von Neumann and Morgenstern [1944]. 
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To apply backward induction for a capital strategy where there is no CRC, define an 
index i for each stage, where i is the number of periods remaining until the ultimate loss 
is determined. At each stage i, there are three optimal quantities that have been 
determined from the prior stage, and may depend on the loss value x from stage i: the 

optimal ownership capital    Ci−1
* (x), the optimal CED    D̂i−1

* (x)  and the optimal capital cost 

   Ki−1
* (x) .  

For stage i, we start with the optimal asset amount from the prior stage i – 1 and 
calculate the solvency cost. We vary the asset amount until the optimal solvency cost is 
attained, and record the values of the above three optimal quantities. The process is 
repeated until the Nth stage is complete. The result is the optimal initial capital, CED 
and capital cost for an N-period model. The intermediate stage results will give the 
optimal quantities for all models of lesser duration that have the same sequence of loss 
increment variances per period.28 Accordingly, for a model with constant volatility per 
period, we will get the optimal results for all models with N or fewer periods. 

6.2 Backward Induction Method with AC Strategy 
Under the AC capital strategy for stage i, the solvency cost has four components:  

(1) the CED for technical insolvency in the stage, (2) the expected CED for future 
insolvency, (3) the capital cost for the stage and (4) the expected future capital costs. 
The first two components represent the total CED for all periods through stage i, 

denoted by   D̂i
,  and the last two represent  Ki

, the total capital cost for all periods. 

Therefore we can represent the solvency cost as    Si
= D̂

i
+ K

i
, where 

 

 
   
D̂

i
= Ĝ

i
+ P̂ D̂

i−1
*

0

A

∫ (x)p̂(x)dx   (6.21) 

and 
 

                                            
28 For example, suppose a three-period model has a standard deviation (SD) of 50 for the first period loss 
increment, 60 for the second period and 80 for the third period. This process will give the optimal results 
for a one-period model with an 80 SD, and a two-period model with a 60 SD for the first period and 80 
for the second period. 
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    Ki
= zC

i
+ K

i−1
* .  (6.22) 

 

Here   P̂  is the CE probability of remaining solvent with assets A, and   ̂p(x) is the CE 
probability density of loss size x.  

We minimize the value of  Si
 to get the optimal available asset value   Ai

*  for this 

stage.29 From equation 4.31, we get the optimal OC: 

    Ci
* = A

i
*−L−K

i−1
* .  (6.23) 

 
The optimal total capital is    Ti

* =C
i
* + K

i−1
* . We also have optimal values of the 

components   D̂i
, and  Ki

, which we label   D̂i
*  and   Ki

* . So now we have the three inputs 

needed to determine the optimal capital for the stage i + 1, and successive stages, until 
the optimal initial capital for the Nth period is found.  

To illustrate this process, consider the basic section 5 example from Appendix A. We 

have   D̂1
*  = 0.7343 and   K1

*  = 6.1075. Applying equations 6.21 and 6.22, and optimizing 

gives   A2
*  = 1357.67,   D̂2

*  =1.4120,   K2
*  = 13.1387 and   C2

*  =  351.56. The next iteration 

gives   D̂3
*  = 2.0560,   K3

*  = 20.4220 and   C3
*

 = 364.16. The corresponding optimal total 

capital amounts are   T1
* = 305.37,   T2

* = 357.67 and   T3
* = 377.30. 

For the lognormal version of the basic example, the process is similar. Figure 6.21  

compares optimal initial total capital amounts for the normal and lognormal cases by 
number of periods from 1 to 15. 

 

                                            
29 Appendix B discusses the optimization technique, which uses two asset values whose difference is small. 
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Figure 6.21 
Optimal Total Capital Amount by Number of Periods 

Normal vs. Lognormal Examples 
 AC Strategy  

 

 
 
 

Notice that the optimal initial total capital increases steadily, but at a declining rate, 
as the number of periods increases. Therefore, as the ultimate loss variance increases, 
the optimal initial capital also increases.  

6.3 Multi-Period Capital with ACR Strategy 

As shown in section 5.42, the two-period optimal ACR capital calculation requires 
two optimal capital relationships at each stage: one based on the cost of holding capital 
z and a smaller amount based on z plus w, the cost of raising capital. Appendix B 
develops the recursive relationships needed for the optimal ACR initial capital for N 
periods. Here we need six optimal quantities at each stage: three similar to those in 
section 6.1 (based on no CRC) and three more based on the higher capital costs under 
the CRC.  

Also, the CRC creates loss region 2b (where capital remains the same). This requires 
an additional calculation: at each stage, the expected CED and capital cost for this 
region must be found by numerical integration. Figure 6.31 extends the section 5.42 
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example to 10 periods and shows the optimal capital for w ranging from 0% to 5%. 

 

Figure 6.31 
Optimal Total Capital Amount by Number of Periods 

ACR Strategy 
 Normal Example  

 

 

 

7. CAPITALIZATION INTERVAL 

The preceding analysis has used an arbitrary period length, with capital flows 
occurring at beginning of each period. Since the period length governs the duration 
between capital flows, and to distinguish it from other insurance periods such as policy 
term, I specifically refer to the period length as the capitalization interval (abbreviated 
as CI).  

The actual length of the CI will affect the optimal capital, since, for a given loss 
duration, a shorter capitalization interval will allow more opportunities to add or 
withdraw capital as the loss amount evolves. To analyze this effect, recall that the 
policy term is defined to be equal to the period length. Thus, the losses occur at the 
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beginning of the policy term,30 and capital flows also occur at the beginning and end of 
the policy term. Section 7.3 discusses the case where the period length is shorter than 
the policy term. 

The frequency of potential capital additions and withdrawals will have a significant 
impact on the optimal capital and solvency cost, regardless of the capital strategy used. 

7.1 Capitalization Interval with the FR Strategy 
To illustrate the effect of the CI, again assume the basic one-period normal example 

from section 5 with a standard deviation of 100. The optimal total capital is 305.37 with 
a solvency cost of 6.84. Suppose that the loss duration is one year: thus, capital is 
supplied at the beginning of the year and the amount of loss is known at the end of the 
year. Now suppose that we subdivide the one-year period into half-year periods, with 
capital flows allowed at the beginning of each. Each smaller period will now have a loss 
standard deviation of 70.71 =  100 / 2  and the capital cost rate is 0.01 = 0.02/2. Under 
the full recapitalization (FR) strategy, the optimal beginning total capital for each half-
year period is now 214.24 with a corresponding 2.38 solvency cost. The solvency cost for 
the entire year is twice this amount, or 4.77. Thus, by allowing more frequent capital 
movement, the consumer value has improved and less capital is required. 

Figure 7.11 shows the effect of further subdividing the one-year period into more 
capitalization intervals: 

 

                                            
30 A more realistic assumption is that the loss may occur randomly throughout the policy term, with the 
average loss happening at the middle of the term. Here, I am merely attempting to show the effect of 
changing the capitalization interval length. A practical application would use the actual expected timing 
of the incurred losses. 
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Figure 7.11 
Optimal FR Total Capital by Number of Intervals 

Basic Normal Example 
 

 

 

As the number of intervals becomes large, the optimal capital amount approaches 
zero!  Although not shown in this graph, the annual solvency cost associated with the 
optimal capital also approaches zero (it is only 0.032 for 100,000 intervals). Since capital 
is added in response to infinitesimal changes in loss evaluation, there is only a tiny 
chance at any time that a default will occur, and if it does, the default amount will be 
infinitesimally small. Notice that this result depends on the assumption of a continuous 
stochastic process for losses: if the loss valuation can change in somewhat large 
increments, then the capital additions cannot “catch up.” Consequently, in a theoretical 
world with a continuous stochastic loss process and the ability to add capital with no 
cost, there is no need for an insurer to carry capital. However, the loss process might 
not be continuous, and, as discussed next in section 7.2, important real-world 
imperfections, frictions and costs no not permit an infinitesimally small CI, so capital is 
indeed required. 

7.2 Capital Strategies and Time Intervals 
For other capital strategies, the optimal capital also declines as the CI becomes 

smaller. Figures 7.22a and 7.22b compare results of the FR, AC, CW and ACR (with 
5% cost of raising capital) strategies, according to interval length. Here, I show the 
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average amount of total capital over the year. Note that the initial capital for the first 
period will also decline with the number of intervals for the FR, AC and ACR with low 
capital-raising cost strategies. However, for the CW and high capital-raising cost ACR 
strategies, the first-period capital amount increases with the number of intervals. 
Nevertheless, since these strategies stockpile capital in the early periods and tend to 
withdraw more of it later than for the other strategies, the average amount of capital 
declines with the number of intervals. 

 

Figure 7.22a 
Optimal Average Total Capital  

by Number of Intervals and Capital Strategy 
Basic Normal Example 
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Figure 7.22b 

Optimal Solvency Cost by Number of Intervals by Capital Strategy 
Basic Normal Example 

 

 

 

Here, all strategies provide smaller optimal capital amounts and solvency costs as the 
CI length decreases. The AC strategy follows the FR strategy in that the optimal 
capital approaches zero as the interval approaches zero. However, the optimal capital 
for the CW and ACR strategies decline much more slowly31 because either capital 
cannot be added, or its addition is costly. 

Although the optimal capital and solvency cost decline with shorter period length, 
there will be a practical limit to this effect. Even for a pure continuous stochastic loss 
process, the minimum interval length is governed by real-world considerations. The 
minimum length depends on a sequence of events, each of which requires some time. 
Among other factors, the loss reserve must be evaluated (for most insurers this occurs 
monthly or quarterly) and then management must decide to raise capital and then 
contact an investment bank. The bank then performs due diligence and offers the public 

                                            
31 It appears that the average capital may reach a fixed limit, but I have not proved this. 
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an opportunity to supply capital. Even if the insurer has a prior commitment from an 
investment bank, this process may take several months.  

Nevertheless, it is clear that policies with short capitalization intervals will require far 
less capital than longer ones, and will be more efficient (with lower solvency costs) as 
well. Because some insurers may be better-equipped to generate capital flows quickly, 
the minimum interval length will vary by insurer. Consequently, this factor should be 
considered in assessing specific insurer capital levels. 

7.3 Capitalization Interval and Short-Duration Losses 
The preceding sections have analyzed long-duration losses, where there is a lag 

between when the loss occurs and when its ultimate value is determined; the lag extends 
over several periods. Conversely, a one-period capital model may be appropriate for 
short-duration losses. Here, as with long-duration losses, the interval length will 
influence the optimal capital. To illustrate, we can modify the basic section 5 example 
to accommodate the short-duration stochastic process.  

Assume that losses occur randomly and uniformly over time, with an annual amount 
whose value is normally distributed with a 1000 mean and 100 standard deviation. Loss 
amounts for claims occurring at any time are independent of prior losses. The other 
parameters (capital cost and risk aversion) are the same as for the long-duration 
example. Suppose that the policy term is one year with capital flows occurring at annual 
intervals. Since, at the end of the policy term, the loss distribution is identical to that of 
the long-duration case, the optimal capital and solvency cost are also the same, at 
305.37 and 6.84.  

Now suppose that we issue two policies, one covering the first half-year and the other 
the second half-year. Capital may supplied or withdrawn at the beginning of each policy 
term. Each period is independent of the other: if insolvency occurs in the first period, 
the policyholder absorbs the default at that point and buys an equivalent policy from 
another insurer to cover the second period. There is no technical insolvency to consider. 
Consequently, the situation is equivalent to the section 7.1 example under the FR 
strategy, giving the same results by interval length. So, for short-duration insurance, 
less capital is required as the capitalization interval decreases, and the optimal capital 
level also depends on the practical limit to the interval length. For any type of 
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insurance, then, the interval length then is an important element when setting the 
amount of risk-based capital. 

7.4 Effect of Policy Term and Capitalization Interval 
The preceding analysis has assumed that the capitalization interval equals the policy 

term. Generally, the policy term is one year,32 but the capitalization interval will most 
likely be shorter than one year. Assume that the premium is paid at the beginning of 
the period. When the capitalization interval is shorter than the policy term, insolvency 
may occur early in the policy term. This event will effectively terminate coverage for 
losses that may occur in the remainder of the policy term, and will produce an 
additional solvency cost, since the full premium is paid up front. 

To illustrate this effect, we extend the section 7.3 short-duration example. Appendix 
A shows the calculation details. 

As the CI becomes shorter, the optimal capital and solvency cost values approach 
zero, as with the case where the policy term equals the CI. Figure 7.41 compares the 
optimal average total capital for an annual policy with N capitalization intervals with 
the total capital for a shorter policy having the same term as each interval. 

 

                                            
32 Some automobile policies are six months and, less commonly, some commercial risks have multi-year 
coverage.  
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Figure 7.41 
Average Optimal Total Capital by Number of Intervals  

Annual vs. Shorter Policy Term 
Normal Short-Duration Example 

 

 

 

Here, more capital is needed if the policy term exceeds the CI, regardless of the 
number of intervals. Thus, besides the CI, which greatly affects the optimal capital, the 
length of the policy term is another variable that will influence the capital amount. This 
effect will be present with long-duration33 losses as well as short-duration losses, since 
the cost of foregone coverage must be considered.  

8. MULTI-PERIOD MODEL EXTENSIONS 

This section extends the basic loss model to incorporate features that may be 
necessary for a practical application. Also, I briefly discuss how the results might apply 
to life insurance. 

8.1 Stochastic Time Horizon 
In a more realistic model of the development process for long-duration losses, the 

                                            
33 Modeling this effect is more complicated than for property, since one must assume a relationship 
between the losses of each interval. For liability losses, these will be correlated. A convenient approach is 
to assume that all losses move together.  
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ultimate duration of losses is not known. Here I relax the basic model assumption that 
the loss develops randomly for N periods and is settled at the end of the Nth period. 
Instead, assume that, although the value evolves according to the section 4.2 liability 
stochastic process, the process may terminate randomly at the end of each period, at 
which point the loss is settled. In this model, there are N possible periods, extending to 
the longest possible claim duration. In effect, there are N possible models, with fixed 
horizons from one to N periods. Call this entity the stochastic-horizon (abbreviated as 
SH) loss model. 

Let  qi
 represent the probability of settlement at the end of period i. Then

    q1
+q

2
++q

N
= 1 . From section 4.21, the variance of the ultimate loss will be 

     σ
2[1 ⋅q

1
+ 2 ⋅q

1
++ N ⋅q

N
], since the variance of each period’s loss increment is 

independent of the prior value. This is a simple weighted average of the loss variances of 
the component N possible models.   

Meanwhile, the CE expected value of the SH loss is proportional to the variance (as 
discussed in section 4.42). Consequently, the CE expected loss of the stochastic-horizon 
loss equals the weighted average of the CEL values of its N component loss models, 

where the weights are the termination probabilities  qi
.  

Under the SH model, the optimal capital will be a weighted average of the optimal 
capital values for the component fixed-horizon models. Given the above analysis, to 
approximate the optimal SH capital, it is reasonable to use the exact termination 
probabilities (rather than a CE adjusted set of probabilities) to weight the optimal 
capital amounts. 

To illustrate the stochastic-horizon model, we extend the basic normal model. 

Assume three periods with termination probabilities   q1
 = 0.5,   q2

 = 0.3 and   q3
 = 0.2. 

The average loss duration is 1.7 periods and the respective amounts of loss paid at the 
end of each period are 500, 300 and 200. From section 6.2, the optimal initial capital 

amounts for the three component horizons are   C1
*  = 305.37,   C2

*  =  357.59 and   C3
*  =  

377.22. Thus, the optimal initial capital for the basic SH model is 335.41 = 0.5(305.37) 
+ 0.3(357.59) + 0.2(377.22). 
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Notice that, if the expected loss is independent of the loss duration (as in the basic 
model) the set of termination probabilities will represent the expected loss payment 
pattern. 

8.2 Present Values 
Because multi-period losses, especially for liability insurance, can be paid several 

years from when the loss occurs, it is necessary to use the present value of the solvency 
cost components in determining optimal capital. Since the present value of a certainty-
equivalent amount must also be a CE value, its present value must be found using a 
risk-free interest rate, denoted by a rate r per period. A similar logic applies to the 
capital cost component. 

To illustrate the effect of using present values, I use the basic AC strategy. Let   Si
(r)  

denote the present value of the solvency cost with r. For a one-period loss, we have  

 

     S1
(r) = D̂

1
/(1+ r)+ zC

1
/(1+ r) . (8.21) 

 
In setting the derivative of   Si

(r)  to zero, the factor 1 + r vanishes. Thus optimal 

capital with r equals the optimal capital with a zero interest rate. For two or more 
periods under the AC strategy, however, the solvency cost does not scale in the same 
way. Using the section 6 backward induction indexing, define the present value of the 

expected capital cost as   Ki
(r) , which is the analog of  Ki

 in equation 6.22: 

 

    Ki
(r) = [zC

i
+ K

i−1
* (r)]/(1+ r) .  (8.22) 

 

The solvency cost for stage i is therefore 

 

    Si
(r) = D̂

i
(1+ r)−i + K

i−1
* (r).  (8.23) 

  

Observe that   Ki
(r)  represent the accumulated present value of the capital costs for 
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all but the first period. The default is realized at the end of i future periods, so its CE 

expected value   D̂i
 is discounted for i periods. However, we only discount the capital 

cost for the current (ith) period for one period. Thus, the present values and the CED 
amounts will not be proportional, and the optimal capital will be different from that 

with a zero interest rate. In fact, it will be lower, since the derivative of    D̂i
(1+ r)−i  

(with respect to assets) in equation 8.23 is relatively lower than the derivative of 

   zCi
(1+ r)−1 , in comparison to the respective derivatives with r = 0. 

The backward induction method easily incorporates present values. Starting with 
equation 8.21, we use equation 8.23 recursively to generate the successive optimal 
capital amounts. To demonstrate this calculation, let r = 4% in the basic AC example. 
We get the optimal two-period initial total capital of 356.18 and three-period total 
capital of 374.49. These values are less than the respective zero-interest amounts of 
357.67 and 377.30. Figure 8.21 compares the optimal total capital for r = 4% with  
r = 0%, for horizons of one to ten periods. 

 

Figure 8.21 
Optimal Initial Total Capital  

0% vs. 4% Riskless Interest Rate 
Normal Example with AC Strategy 
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Notice that the optimal capital here is not the same as what we would get by 
discounting the N-period optimal total capital with r = 0, by N periods at the rate r. 
For example, the optimal initial total capital for 10 periods with r = 0 is 422.97. The 
present value of this amount at 4% is 285.75, but the true optimal capital amount (in 
Figure 8.21) is 411.84, which is only slightly less than the optimal capital with a zero 
interest rate. 

8.3 Risk Margins 
The preceding analysis assumed that the loss component of the premium included 

only the unadjusted expected value of the loss. The premium did not reflect a positive 
market price for bearing the risk. Here I assume that the market value of the loss is 
greater than the expected loss: i.e., it contains a risk margin, whose value is denoted by 
M. The expected loss, including the risk margin, can be determined from a third 
stochastic process with an adjusted probability distribution. For a one-period model, we 
have 

 

 
   
L = p

0

∞

∫ (x)xdx = L + M , (8.31) 

 
where   p(x)  denotes the adjusted probability underlying the risk margin. Here the 
relevant risk is systematic: it cannot be reduced through pooling, and therefore 
commands a price in financial markets. The value of the policyholder’s underlying risk, 
before it is reduced through insurance pooling, will be larger per unit of expected loss 
than that of the insurer’s risk (which is reduced through pooling). So we have 

   L̂ ≥L ≥L . 

For a multi-period stochastic process with equal variance of loss increments for each 
period, I assume that the risk margin increases uniformly with the number of periods. 
Thus, if stochastic process is additive, the risk margin will also be additive. Let m 
represent the risk margin as a ratio to the expected loss L for one period. So, for an N-
period loss, the risk margin will equal mLN, and the market value of the expected loss 
will be L(1 + Nm).  

For a multiplicative stochastic process, the market value of L is    L(1+m)N . Observe 
that the present value of the market-value loss is    L(1+m)N(1+ r)−N , where r is the risk-



Insurance Risk-Based Capital with a Multi-Period Time Horizon 
 

Draft 10-20-14; For submission to Casualty Actuarial Society Forum 52 

free interest rate. Therefore, the market value of the expected loss can be expressed as 
the expected value L, discounted at a risk-adjusted interest rate    ra = (r −m)/(1+m) .34 

The fair premium is    π = L + M + K . The risk margin then provides additional total 
capital, beyond the amount from the expected capital cost K. The amount M can also 
be considered as policyholder-supplied capital. Thus, for the same loss volatility, a 
higher risk margin will imply a lower optimal fair-value capital amount. The additional 
assets function as capital, so to give the same insolvency protection, the insurer will 
need less capital than without the risk margin. As discussed in section 4.4, the risk 
margin is equivalent to ownership capital in terms of solvency protection.35 For multiple 
periods, the relationship holds as well, since the CED depends on the asset amount and 
not the accounting measure of the loss. To illustrate this effect, assume the basic AC 
normal model with a 0% interest rate, and let m = 2%.36 From section 5.31, for a one-
period model without the risk margin, the optimal total capital is 305.37 and optimal 
assets are 1305.37. The expected default depends on the asset level, not the capital 
amount. With the risk margin, the same assets are also optimal: the CED is the same, 
and changing the asset amount through the initial owner-supplied capital will reduce 
the consumer value. 

Thus, the premium and initial assets will be larger by 20 = 0.02(1000). Optimal one-
period capital is now reduced by 20 to 285.37 to give the same CE default probability 
(equal to the capital cost rate). Since the risk margin in this example is proportional to 
the number of periods, the optimal initial capital is reduced by 20 units times the 
number of periods in the time horizon. 

                                            
34 Butsic [1988] develops the risk-adjusted interest rate for insurance reserving and pricing applications. 
35 In another sense, the risk margin may be considered as ownership capital in that it is not a third-party 
obligation: it “belongs” to the owners of the insurance firm and will be returned to the owners if the 
insurance proves to be profitable.  
36 In practice, the amount of risk margin is a small fraction of premium. It is straightforward to show that 
the risk margin is    m = [(R−r) / (1− t)] / [C / L] , where R is the expected return on the capital C, r is the 

risk-free return and t is the income tax rate. For example, assume an insurer’s current expected (after-
tax) return on equity is about 4% above the risk-free investment return, the effective tax rate is 30% and 
the leverage ratio C/L is 40%. A risk margin equal to 2.3% of expected loss will provide the required 
return on equity. Note also that the risk margin cannot exceed the difference between the CE value of the 
loss and its expected value; otherwise the policyholder is better off without insurance. 
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 Figure 8.31 compares the optimal initial fair-value capital for the AC strategy by 
time horizon for no risk margin and for risk margins of 1% and 2%.  

Figure 8.31 
Optimal Initial Fair Value Capital by Risk Margin 

and Time Horizon 
Normal Example with AC Strategy 

 

 

 
Notice that if the time horizon is long enough and the risk margin is large enough, it 

is possible that the initial fair-value capital can be lower than with a short horizon. 
However, the total capital (represented by a 0% risk margin) continues to increase with 
the time horizon. 

With a risk margin, the expected capital cost for future periods is not the same as 
without one, because the insurer values the loss according to the market value loss 
distribution   p(x) ; the future capital amount depends on the future random loss value. 
Consequently, the expected capital should be determined from the market value loss 
distribution and not the unadjusted distribution (used in sections 5 through 7). 
However, this effect does not change the optimal initial total capital amount produced 
with the unadjusted loss distribution, since a change in assets will not produce a 
corresponding change in the expected future capital amount (it is fixed with respect to 
the asset value). But, since the expected capital costs increase, compared to the no-risk 
margin case, the optimal fair-value capital will be less. I have ignored the effect of the 
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market value loss distribution on capital costs for this section.37  

8.4 Life Insurance 
This paper has focused on property-casualty insurance.  As such, the scope of the 

study precludes a thorough development of optimal capital for of life insurance. 
However, below I briefly discuss some implications of the findings in this paper to an 
analysis of life insurance. 

Life Insurance Liability Risk 

 Generally, for life insurance the risk of losses being higher than expected is low due 
to the lack of correlation between claims from separate policies. There is some chance of 
default from losses occurring earlier than expected (e.g., whole life insurance) or later 
than expected (e.g., annuities). The risk of default for the amount of claims and their 
timing can be addressed by the techniques presented in the earlier sections. Life claims 
risk has a different stochastic process than long-duration losses, since the periodic 
indemnity amounts are fixed but the horizon is stochastic. The process is not 
Markovian, since if more/fewer insureds die, then the probability of future deaths 
changes for the insured population.  

Embedded Policyholder Options  

 A major source of risk for life insurers is the nature of the embedded options in 
policy contracts. These are not usually present for property-casualty insurance. For 
example, policyholders may stop paying premiums or they may add coverage after the 
policy has been in force; policyholders may be able to make loans at favorable terms; the 
policy may have other investment guarantees. The effect of any of these depends on 
policyholder behavior. Note that some policy features may not remain after the insurer 
becomes insolvent and is under conservatorship. Further, the policy features that create 
default risk have value to the policyholder, which should be incorporated into the 
consumer value component of the optimal capital calculation. 

Capital Funding Strategies 

Notwithstanding the above differences between life and PC insurance, the capital 
                                            
37 Using the section 5.3 basic example, this omission overstates optimal FV capital for two periods by 0.12 
and for five periods by 2.11. 
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funding strategies available to life insurers are the same as for property-casualty 
insurers. The availability and cost of external capital will also be similar. These factors 
will have parallel impacts on the amount of capital needed for life insurers. Also, 
modeling the asset risk will be similar, since both types of insurers have the same 
categories of investments in their portfolios. 

9. MULTI-PERIOD ASSET RISK 

The preceding results for risky losses can be extended to the case where assets are 
risky. To isolate the capital for risky assets from that of risky losses, I assume that the 
insurer has a riskless N-period loss liability, but its assets are risky.38 The intuition here 
is that there would be no insurance without the presence of the underlying loss, so the 
time horizon for asset risk should match that of the loss. Also assume (temporarily) that 
the CRC is zero. 

9.1 One-Period Asset Model 
For a one-period loss, where the loss is fixed and the ending asset amount is a 

random variable, the CE expected default value is  

  

 
   
D̂(A) = (L−x)p̂(x)dx

0

L

∫ . (9.11) 

 

Here x represents the asset value and   ̂p(x) its CE probability. With an assumed zero 

risk-free interest rate, and presuming that policyholders have the same risk preferences 
as investors,39 the CE expected value of the ending assets must equal the initial asset 
value A. Otherwise the policyholder will have a net gain or loss in consumer value 

                                            
38 This technique is used to determine asset risk-based capital in Butsic [1994].  
39 This assumption is not essential, but it simplifies the analysis. If policyholders do not have the same 
risk preferences as investors, then there may be a tendency for less risk-avoiding policyholders to migrate 
toward insurers that have higher-than-average investment risk. Conversely, more risk-avoiding 
policyholders might gravitate to insurers with lower than-average investment risk. 
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merely by the choice of the insurer’s investments.40 Consequently, the expected return 
on the assets is not relevant to the CE calculations. However, it can be important for 
determining the unadjusted default values and the expected capital amounts for periods 
after the initial period. 

The consumer value of the insurance contract with the riskless loss and risky assets 
equals the CE value of the loss, minus the premium, which is the loss value plus the 
solvency cost. The solvency cost has the some form as for losses:    S = zC + D̂(A) . 
Consequently, the consumer value of the insurance is the negative of the solvency cost, 
since the CE value of the loss equals the nominal (fixed) value of the loss. No 
prospective policyholder would knowingly buy such a contract. However, here we want 
to find the capital amount that minimizes the negative CV. In a more realistic context, 
the asset capital is combined with the loss capital and the consumer value is generally 
positive.41 

By minimizing the solvency cost, the optimal capital is found by solving for  

   Q̂(A) = z , a result parallel to that of the loss capital case. 

9.2 General Two-Period AC Asset Model 
For two periods, however, the situation is not parallel to the case of risky losses. 

Here, the loss value will continue to evolve if technical solvency occurs at the end of the 
first period. With risky assets, in contrast, if the insurer becomes technically insolvent 
after the first period, the asset risk will drop to virtually zero since the insurer will enter 
conservatorship shortly after becoming technically insolvent. As discussed in section 3.2, 
the asset portfolio will be converted to an essentially riskless one by the conservator. 
For simplicity, I assume that the investment portfolio is immediately converted to 
riskless assets upon technical insolvency. Also assume that if the insurer remains 
solvent, the asset portfolio retains the same risk as the size of the portfolio changes. In 
other words, the variance of the asset portfolio value remains constant over time, even 
though the asset amount may change. 

                                            
40 In finance, this concept is called risk-neutral valuation and is a cornerstone of analyzing financial 
instruments.  
41 This negative consumer value for risky assets is examined further in EBRM. It is not clear why insurers 
have risky investments, since there is no apparent benefit to policyholders that can overcome the cost of 
double taxation.  
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Therefore, if the insurer becomes technically insolvent after one period, the amount of 
the default is determined with certainty at that time: both the asset and the liability 
values are fixed and are no longer subject to random variation. If the insurer remains 
solvent, under the AC strategy it adjusts it capital to the optimum amount for the 
remaining period. The asset amount changes accordingly. 

Denote the CE expected default at the end of the first period by   D̂1
(A) . If solvent at 

the end of the first period, the assets are adjusted to give the optimal capital amount for 
the remaining period.42 Let   C2

*  represent the optimal second-period capital and   D̂2
*  the 

corresponding optimal CED for the second period. 

The unconditional CED for the second period is the optimal CED for the second 
period times the CE probability of remaining solvent, or   D̂2

*P̂
1
(A) . Denote the first 

period capital amount by   C1
.  

The solvency cost for the asset risk is the sum of the CE default amounts for both 
periods and the expected capital cost: 

  

    S = D̂
1
(A)+ D̂

2
*P̂(A)+ zC

1
+ zC

2
* .  (9.21) 

 
 Setting the derivative of S with respect to assets equal to zero, we get the condition 

for the optimal beginning first-period capital: 

 

    Q̂1
(A) = z + p̂(A)D̂

2
* ,  (9.22) 

  

where   ̂p(A)  is the CE probability density at A. Since this density is positive, the initial 
capital for the two-period asset risk for an AC strategy is actually less than that for the 
FR strategy, where each period’s capital is determined without regard to the risk of the 
other periods. Since the density will generally be quite small relative to z, the optimal 
beginning first-period capital is approximated by the FR strategy where    Q̂1

(A) = z . 

                                            
42 For losses, the optimal capital for the remaining period may depend on the ending first-period loss 
amount, such as with the lognormal distribution. However, for assets, the optimal capital will be constant, 
since the loss amount is fixed and the assets are adjusted to reach the optimal capital amount. 
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The reason why the optimal asset capital under the AC strategy is less than that 
with the FR strategy is that the risky asset portfolio is eliminated under technical 
insolvency, while it is not eliminated under full recapitalization. From equation 9.21, if 

we are at the beginning one-period optimal capital    C1
=C

1
* , and we lower the capital 

amount a tiny amount, the positive change in the first period CED virtually equals the 
negative change in the capital cost (because we are at the optimum). However, the 
second-period CED and capital costs are reduced because the probability of remaining 
solvent is reduced. Under FR, the policyholders may experience insolvency after the first 
period, but the full capital (and its cost) is present at the start of the second period and 
they may sustain insolvency a second time. 

Appendix A provides a numerical example illustrating the optimal AC capital for 
two-period risk. 

9.3 Asset Risk with Multiple Periods and Cost of Raising Capital  

The methodology for determining initial capital for multi-period asset risk is parallel 
to that for losses in section 5.4. In fact, it is somewhat simpler, in that there is no need 
to calculate   Ĝ ; a default in the first period is based on a one-period model, since 
investment risk is eliminated in conservatorship. Also, the investment portfolio has the 
same risk for each period, which simplifies the computation.43 For more than two 
periods, we use backward induction to determine the optimal first-period capital. 

Figure 9.31 shows the optimal first-period asset-risk total capital for one to ten 
periods, with a CRC of 0%, 3% and 5%, given the section 9.2 example.  

 

                                            
43 Under the alternative assumption that investment risk (standard deviation) is proportional to the asset 
value, there is not much difference in results. For example, in the Figure 9.31 results (with w = 0), the 
maximum difference in optimal capital is for N = 10: we have 95.36 for constant risk and 95.41 for 
proportional risk, a difference of only 0.05%. 
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Figure 9.31 
Optimal AC Initial Total Capital Comparison  
by Time Horizon and Cost of Raising Capital 

Section 9.2 Example 
 

 

 

These results indicate that with a moderate CRC, the optimal initial capital rises 
somewhat for a few periods, and then declines as the number of periods grows. With no 
CRC, it strictly declines with the number of periods.  

In Figure 9.32, I use a 3% CRC and vary the standard deviation of the per-period 
asset risk (a standard deviation of 25, 50 or 100).  
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Figure 9.32 
Optimal AC Initial Total Capital Comparison  

by Time Horizon and Asset Standard Deviation 
Section 9.2 Example 

 

 

 

These results suggest that if the asset risk is moderate (i.e., with an standard 
deviation of less than about 5% of assets) and the CRC is moderate, then the optimal 
capital for asset risk is approximately the same for each time horizon. 

10. CONCLUSION 

The main purpose of this study is to further the understanding of how to establish 
the risk-based capital for multi-period insurance losses and assets. I have attempted to 
accomplish this without making arbitrary assumptions about the choice of risk measure 
(e.g., VaR, TVaR and others) and which time horizon model (one-year vs. runoff) 
should be used. The volatility of each period is given its proper weight. It is important 
to understand the economic principles involved and which variables influence this 
process. Much of this undertaking is new territory. In particular, the notions of 
policyholder risk preferences and dynamic capital strategies may be unfamiliar to an 
actuarial audience. While falling short of a full practical application, I have provided 
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numerical examples to illustrate how the concepts might be applied in a realistic setting. 

The major qualitative results of this paper are summarized in section 1.1. Perhaps 
the chief among them are: (1) the optimal capital for long-horizon losses depends on 
both the annual loss volatility and the ultimate loss volatility, and will be greater than 
optimal capital based on the annual volatility, and (2) optimal capital for any horizon 
depends on the insurer’s ability to raise capital, and its cost of raising capital. Analyzing 
the first relationship is largely a technical actuarial exercise, while analyzing the second 
involves understanding an insurer’s connections to capital markets, ownership structure 
and internal information processes.  

Knowing the optimal capital provides the basis for applications in product pricing, 
corporate governance and regulation. Due to the many variables involved, optimizing 
capital for multi-period insurance can be rather complicated and perhaps daunting, even 
when contemplating a simple model. However, as shown here, the simple one-period 
model provides the basic core of the multi-period model. The other parts can be 
assembled step-by-step to produce useful results. More complex models with multiple 
variables can be built using simulation techniques. In particular, asset risk could be 
analyzed jointly with loss risk. 

The analysis in this paper has identified some important variables and factors that 
are not conventionally considered in setting capital standards for insurance. These 
include capital funding strategies, the cost of raising external capital, the capitalization 
interval, policy term, ownership structure and the effect of conservatorship. These areas 
provide a fertile source for future research. 
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APPENDIX A: NUMERICAL EXAMPLES  

Section 4.2 Example 
The loss stochastic process can be illustrated with a simple two-period binary 

example. The initial expected loss is 1000 and the reserve increments  and  each 

can be either  200, or –200 with probability 0.5, giving a per-period variance of (200)2. 

Let a = .0025; from equation 4.221 we have  = 1100 and  = 1200. Thus the risk 

value per period is 100. The first period CE expected loss of 1100 is obtained by 
assigning a CE probability of 0.75 to the +200 reserve increment and 0.25 to the  –200 
increment.44  

 The evolution of the ultimate loss and its certainty-equivalent counterpart is shown 
in Figure 4.23 below. The first-period reserve increment probabilities and CE 

probabilities are denoted by  and , with  and  representing the second-period 

values. 

 

                                            
44 In this simple discrete example, the variance of the CE distribution for any period is less than that of 
the unadjusted distribution (30,000 vs. 40,000). However, for a continuous stochastic process, such as with 
normally distributed increments, it is possible to have the same variance for both distributions. 

  X1   X2

  L̂1   L̂2

  p1   p̂1   p2   p̂2
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Figure 4.231 
Loss Reserve Evolution, Numerical Example 
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Notice that for each period the variance of the loss increment is the same and that 

the variance of the evolved loss increases over time. Meanwhile, the mean for each 
subsequent period equals the value of the loss from the prior period: for instance, if L1 

becomes 1200 at the end of period 1, then 1200 is the mean for period 2. The CE value 
of the second-period loss conditional on the emerged 1200 amount is 1200 plus the 100 
risk value for the second period, or 1300. 

Section 5.1 Example 
Assume that the expected loss is 1000 and increments for each period range from –

400 to 400 in steps of 50; the corresponding probabilities are generated by a binomial 
distribution having a base probability 0.5 with 16 trials. Thus the probability of a 400 
increment is (0.5)16, the probability of a 350 increment is 16(0.5)16, and so forth. The 
expected value of the increments is zero and the variance is (100)2. For the parallel CE 
stochastic loss process, assume that the base probability is 0.625, giving a higher 
subjective likelihood of larger increments: the probability of a 400 increment is (0.625)16 
= 0.00054 and the probability of a 350 increment is 16(0.625)15(0.375) = 0.00520. The 
CE expected value of the increment is 100, so the CE expected loss increases by 100 

  p1   p̂1   p2   p̂2    p1
×p

2    p̂1
× p̂

2
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each period.  

Now suppose that initial assets are 1300, so a technical insolvency occurs if the first-
period loss is either 1350 or 1400 (the maximum possible loss). When the technical 
insolvency occurs, the assets remain fixed at 1300, but the loss can still develop for one 
more period. Consequently, if the first-period loss is 1350, its value at the end of the 
second period is one of  {1350 – 400, 1350 – 350,  , 1350 + 400}, or {950, 1000, , 
1750}. However, only the amounts {1350, 1400, , 1750} will produce a default when 
the loss is settled at the end of the second period. The respective CE probabilities for 
these amounts are {0.11718, 0.17361,  , 0.00054}. Weighting the possible default 
amounts by their occurrence probabilities gives 152.59, the conditional CED given that 
the 1350 loss amount occurs.  

For the 1400 first-period loss, the range of its possible second-period values that 
produce an ultimate default is larger: from 1350 to 1800. Thus, its conditional CED is 
larger, at 200.72, than that for the 1350 loss amount. Table 5.1 outlines these 
calculations. 
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Table 5.1 
Conditional Certainty-Equivalent Expected Default 

Two-Period Numerical Example 
Discrete Stochastic Process 

 

       
Total 

One-period 
Loss 

CE 
Probability 0.00054 0.00520 . . . 0.06250 0.02625 

 

        1400 2P Loss 1800 1750 . . .  1400 1350 
 

 
Default 500 450 . . .  100 50 

 

 

CE  Expected 
Default 0.27 2.34 

 
11.72 3.12 200.72 

        1350 2P Loss 1750 1700 . . .  1350 
  

 
Default 450 400 . . .  50 0 

 

 

CE  Expected 
Default 0.2439 2.0817 . . . 5.8592 0 152.59 

 
 

The unconditional CED is determined by weighting the above conditional amounts 
by the CE probabilities of the 1350 and 1400 loss values occurring. We get 0.9029 = 
0.00054(200.72) + 0.00520(152.59). Notice that under the FR strategy, with the same 
1300 in initial assets, the technical insolvency at the end of the first period is converted 
to a hard insolvency. So the CED equals the possible default amounts (50 = 1350 – 
1300 and 100 = 1400 – 1300) multiplied by the respective CE probabilities: 0.3144 = 
0.00520(50) + 0.00054(100). For comparison with the FR strategy, notice that for each 
loss value producing a default (e.g., 1350) the default amount (50 here) is fixed under 
FR, but will develop under AC (the CE expected value is 152.59). For a positive 
second-period variance, the mathematical properties of the default calculation ensure 
that the conditional expected ultimate default is greater than that of the original first-
period default: the default value cannot be negative; it equals zero if the loss develops 
favorably. This asymmetry increases the expected default amount from its initial value. 
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Section 5.31 Example 
Consider a two-period normal stochastic loss process with a mean of 1000 and 

variance of the loss increment equal to 1002 for each period. Assume that the CE of the 
expected loss after one period is 1100 and that the risk value (the CE of the loss minus 
its expected value) at each development stage is strictly proportional to the cumulative 
variance as in section 4.22. Thus, the CE value of the ultimate loss at the end of the 
second period is 1200. At each stage of loss development the CE loss is normally 
distributed with the same variance as the unadjusted distribution, but with the adjusted 
mean equal to the CE value of the evolved loss. 

Assume that the frictional capital cost z = 2%. Thus for one period, the optimal 
assets are such that the CE default probability is 0.02. This occurs with 1305.37 of 
assets available to pay losses and ownership capital of 305.37. The premium of 
1006.1075 is the 1000 of expected loss plus 6.1075 = 0.02(305.37) of capital cost, so 
initial assets are the premium plus the 305.37 of ownership capital. However, the capital 
cost is expended prior to the loss payment, so the assets available to pay the loss 
include the capital plus the expected loss portion of the premium. The CED is 0.7343. 

 For two periods, under the FR strategy, the optimal total capital for the first period 
is also 305.37. However, the ownership capital is less than 305.37 by the amount of the 
expected second-period capital cost (which is policyholder-supplied capital contained in 
the premium) of 6.1075, so the first-period OC equals 299.26. The optimal solvency cost 
is 13.5613 = 2(.07343) + 6.1075 + 0.2(299.26). 

For two periods, under the AC strategy, suppose we begin with the optimal one-
period optimal available assets of 1305.37. The expected second-period capital cost is the 
optimal one-period capital cost of  6.1075, since under the normal distribution, the 
optimal one-period capital depends only on the variance for that period.  

 However, the CE expected default is higher. Using equation 5.211,45 with available 
assets of 1305.37, the CE expected default for technical insolvency after the first period 

is   Ĝ  = 2.8274. Since the CE probability of default is 0.02, the CE probability of 
remaining solvent after one period is 0.98. Because the insurer begins the second period 

                                            
45 For this calculation, I used 1,000 discrete ending first-period loss values to determine an approximate 
value.  
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with optimal capital, the second-period CED is 0.7343. Thus, the CE expected default 

for remaining solvent after one period is   Ĥ  = 0.7196 = 0.98(0.7343). The total CED is 
3.5471 = 2.8274 + 0.7196. For the first period, the ownership capital is 299.26, which is 
less than the total capital by the 6.1075 expected second-period capital cost. 
Accordingly, the first-period capital cost equals 5.9852. Thus the total capital cost is 
12.0927 = 5.98522 + 6.1075 and the solvency cost is 15.6398 = 3.5471 + 12.0927. 

The AC strategy consumer value can be improved by increasing the initial capital: 
the optimal available asset amount for the AC strategy is 1357.67, which produces an 
optimal ownership capital of 351.56 and an optimal total capital of 357.67 (the 
difference is the expected unexpended second-period capital cost of 6.1075). The first 
period capital cost is 7.0312, giving a total expected capital cost of 13.1387. With higher 
available assets, the CE default probability for the first period drops  to 0.0050 and   Ĝ
reduces to 0.6813. The CE probability of remaining solvent is 0.9950, so   Ĥ  is higher at 
0.7307 = 0.9950(0.7343), giving a total CED of 1.4120. 

The optimal solvency cost is 14.5507 = 1.4120 + 13.1387, which is an improvement of  
1.2114 over than the above case using the optimal one-period available assets. However, 
it is greater than the 13.5613 optimal FR solvency cost. 

 

Section 5.42 Example 
Suppose that the cost of raising capital is w = 3% and initial assets are 1400. Thus 

we get  = 264.49 (from equation 5.411) and = 305.37. We need to determine the 

expected cost of the capital and the CE value of the expected default. 

Suppose that the initial first-period capital is 400. Table 5.422 shows the beginning 
second-period expected ownership capital amounts by region. 

 

  CR
*

  C
*
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Table 5.422 
Expected OC by Region 

Two-Period AC Strategy with Cost of Raising Capital 
Normal Example 

 

Region Capital Carried 
(a) 

Capital Raised 
(b) 

Probability 
(c) 

Expected Value 
[c(a + b)] 

1 0 0 0.00003   0.00 

2a 218.45 46.04 0.08765  23.18 

2b 286.52 0 0.08432  24.16 

3 305.37 0 0.82799 252.85 

Total   1.00000 300.19 

 

The capital carried (a) and raised amounts (b) are the conditional expected values 
given that ending first-period capital is in the particular region. The region 2a 
unconditional expected capital carried amount is determined from equation 5.421, and 
equals 19.9382. The probability of the loss being in this region is 0.08765, so the 
conditional expected capital amount is 218.45 = 19.9382/0.08765. The sum of the 
expected capital carried and capital raised amounts for region 2a equals the optimal 
capital-if-raised amount 264.49. Thus, the conditional expected amount of capital raised 
is 46.04 = 264.49 – 218.45. The region 2b capital carried amounts are determined from 
equation 5.422 in a similar manner. 

Since the expected amount of OC in the second period is 300.19, the expected cost of 
holding the capital is 6.0038 = 0.02(300.19). The first-period holding cost is 8.0000 = 
0.02(400), so the total capital cost is 14.0038. The expected amount of capital raised is 
4.0353 = 46.04(0.08765), giving an expected CRC of 0.1211 = 0.03(4.0353). Therefore, 
with initial capital of 400, the total expected capital cost is 14.1249.  

The CE expected default amount can also be determined by region, as shown in 
Table 5.423. 
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Table 5.423 
Expected CE Default by Region 

Two-Period AC Strategy with Cost of Raising Capital 
Normal Example 

 

Region CE Default CE Probability Expected Value 

1  133.55 0.0014 0.1803 

2 2.0893 0.3599 0.7519 

3 1.4118 0.1602 0.2233 

4 0.7343 0.4786 0.3514 

Total  1.000 1.3677 

 

The solvency cost is the CED plus the expected capital cost: 15.6318 = 1.3677 + 
14.1249. Minimizing the solvency cost by varying the initial OC gives an optimal initial 
OC of 367.57 and a total capital of 377.73.   

Section 7.4 Example 

Assume that the capitalization interval is one-half year. If the policy period is one 
half year, the optimal capital is 214.50, the CED is 0.2396 and capital cost is 2.1450 
(giving a 2.3846 solvency cost). However, if the policy term is one year, more capital is 
required at the beginning of the policy term. If we start with the 214.50 in capital the 
CE probability of default in the first half-year is 1% (equal to the capital cost rate for 
the period). If default occurs, the consumer value of the foregone coverage equals the 
CE value of the remaining loss, minus the CED that would accompany the coverage. 
The CE loss value is 550 (one-half of 1100) and the CED is 0.2396, so the value of the 
lost coverage is 5.4976 = 0.01(550 – 0.2396). The CE value of the second period default 
is the CED given that the insurer is solvent after the first period, times the CE default 
probability, or 0.2372 = 0.2396(0.99). The expected second-period capital cost is the 
capital cost given that the insurer is solvent after the first period, times the unadjusted 
default probability, or 2.1424 = 2.1450(0.9998); this gives a second-period solvency cost 
(excluding the foregone coverage cost) of 2.3796 = 0.2372 + 2.1424. 

Thus the total solvency cost is 10.2618 = 2.3846 + 5.4976 + 2.3796. But, by 
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increasing the initial capital, we can reduce the solvency cost: it is minimized at 5.4800 
when the capital is 290.22. Notice that both of these values are lower than the case of 
an annual policy with an annual capitalization interval. Keeping the annual policy term 
and reducing the capitalization interval to ¼ year, we get (using the backward induction 
method from section 6) the optimal capital of 214.69 with a corresponding 3.3919 
solvency cost.  

Section 9.2 Example 
Assume that the fixed loss amount is 1000 and that the asset value follows a normal 

stochastic process (random walk) with an standard deviation of 50 per period.  
Following the section 5 example, assume that z = 2%. Therefore the optimal CE default 
probability is 0.02. The optimal capital for a one-period loss is 102.69 with a CED of 
0.3672. Thus the solvency cost is 2.4209 = 0.02(102.69) + 0.3672. 

For a two-period fixed loss of 1000 and the same stochastic process for asset values, 
suppose that we use the same 102.69 of beginning capital under the AC strategy. The 
solvency cost for the first period is the same as for the one-period model. Since capital is 
added or withdrawn to maintain the optimal level for the second period, the CE 
expected default for the second period is the optimal first period CED times the CD 
probability of remaining solvent: 0.3596 = 0.3762(0.98). 

Assume that the expected return on the assets is 4%. This gives an expected first-
period ending asset amount of 1146.79 and thus the unadjusted probability of remaining 
solvent is 0.9983. The expected capital cost for the second period is then 2.0503 = 
0.9983(0.02)(102.69), giving a second-period solvency cost of 2.4101 and a total solvency 
cost for both periods of 4.8311. 

Using equation 8.12, the optimal first-period capital under the AC strategy is 102.07, 
which is slightly less than that of the optimal one-period and the two-period FR 
amount. Here the solvency cost is minimized at 4.8309. Under the FR strategy the 
solvency cost is twice the one-period amount, or 4.8418. 

APPENDIX B: BACKWARD INDUCTION WITH ACR STRATEGY 

Under the ACR strategy, there are two optimal ownership capital amounts to 
consider at each stage i of the iteration. The first is the optimal OC given the current 



Insurance Risk-Based Capital with a Multi-Period Time Horizon 
 

Draft 10-20-14; For submission to Casualty Actuarial Society Forum 71 

loss value is small enough to withdraw capital. This is the amount    Ci−1
* (x) defined under 

the AC strategy. The second is the optimal capital    CR
i−1
* (x)  given the current loss value 

is large enough to add capital (by raising it externally).  

At each stage i, there are now six optimal quantities that we need to calculate: the 
three from the AC strategy (capital, CED and capital cost), and their counterparts 
given that capital is raised: the optimal capital is defined above, the optimal CED is 

   D̂R
i−1
* (x)  and the optimal capital cost    KR

i−1
* (x) . 

At each stage, the three capital-raising components are found by using a capital cost 
for the current period of z + w instead of only z. We then have a parallel calculation of 
the solvency cost    SR

i
= D̂R

i
+ KR

i
, which is minimized by changing the asset amount.  

Also, at each stage it is necessary to calculate the CED and capital cost components 
for region 2a (where capital is neither raised nor withdrawn) by numerical integration: 
we vary the capital amount in this region and weight the results by the corresponding 
loss probabilities. 

To illustrate this process, we use the basic normal example with a 3% CRC. For one 

period we have the key variables   C1
*  = 305.37,   D̂1

*  = 0.7343,   K1
*  = 6.1075,   CR

1
*  = 

264.49,   D̂R
1
*  = 2.0893 and   KR

1
*  = 5.2897. To obtain the optimal two-period value   C2

* , 

we start with the optimal one-period assets of 1305.37 and calculate the solvency cost 

based on the capital cost rate for the first period of z = 0.02:   S2
 = 17.1103. This is done 

by adding the CED and capital cost components for the four regions of first-period loss 
outcomes (see section 5.42). This calculation uses the above six key variables. We 
perform a parallel calculation with the assets increased by a small amount   ΔA . With  

  ΔA  =  0.01, we get   S2
= 17.1097. This gives a change in the solvency cost of  

    ΔS
2
 =  –0.0006. We raise the asset amount (and its   A +ΔA  counterpart) until 

    ΔS
2
 =  0. This occurs when A = 1377.73 and   S2

 = 15.5035, giving   T2
* = 377.73,   C2

*  = 

367.57,   D̂2
*  = 1.8682 and   K2

*  = 13.6353. 

We next do a parallel calculation where the first period capital cost is z + w = 0.05. 
This provides the optimal values of the key variables for the case where capital is raised 
after the first period of a three-period horizon (we are preparing for the next stage of 
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the induction procedure). Here we get   CR
2
*  = 328.98,   D̂R

2
*  = 3.1924 and   KR

2
*  = 

12.8794. 

We continue the induction process to get the optimal key variables for longer 
horizons.  
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GLOSSARY OF ABBREVIATIONS AND NOTATION 

 
Abbreviation Meaning Section 

Where 
Defined 

AC Add capital (strategy) 4.5 
ACR Add capital (strategy) with cost of raising capital 5.4 
CE Certainty equivalent 2.1 
CED Certainty equivalent expected default 2.1 
CI Capitalization interval 7.3 
CW Capital withdrawal (strategy) 4.5 
EBRM Economic Basis … Risk Based Capital 

Measurement 
1 

FA Fixed assets (strategy) 4.5 
FCC Frictional capital cost 2.2 
FR Full recapitalization (strategy) 4.5 
OC Ownership Capital 4.4 
SH Stochastic Horizon 8.1 
VaR Value-at-risk 1 
TVar Tail Value-at-risk 1 

 
 
 
 
 

Variable Meaning Where 
Defined 

a Risk aversion parameter 4.2 

A Assets 2.1 

C Capital (ownership) 4.1 

CF Capital flow 4.5 

D Expected default 2.1 

DR Expected default if capital is raised App. B 

E( ) Expectation operator 4.3 

EF Expected capital carried forward 5.4 

G Expected default under technical insolvency 5.1 

H Expected default for remaining periods 5.2 

i Period index 4.3 

K Expected capital cost 4.3 

KR Expected capital cost if capital is raised App. B 
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L Expected loss 2.1 

M Risk margin value 8.3 

N Number of periods 4.1 

p( ) Probability density 2.1 
P( ) Cumulative probability  6.2 

q Probability of period length 8.1 

Q Default probability 2.2 

r Risk-free interest rate 8.2 

R Expected return on capital 8.3 

S Solvency cost 5.2 

t Income tax rate 8.3 

T Total capital 4.4 

V Consumer value 2.2 

w Cost of raising capital 5.4 

x Loss or asset size 2.1 

X Reserve increment 4.2 

Y Ratio of successive reserve amounts 4.2 

z Frictional cost of capital 2.2 

 ∂  Partial derivative operator 5.2  

 Δ  Asset increment App. B 

 π  Premium 2.2 

 σ  Loss standard deviation 4.2 

Subscript 
 

  

a Region  2a 5.4 

b Region  2a 5.4 

E Ending capital 5.4 

R Raising capital 5.4 

t Elapsed time 4.2 
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