Casualty Actuarial Society Automated Vehicle Task Force: Industry update

November 16, 2015

ANTITRUST NOTICE

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

CAS AVTF: Overview

Goal The CAS AVTF is researching the technology's risks to provide policymakers with the information needed to ensure the product is brought to market as safely and efficiently as possible.

Focus			
Pre market	Post market	Post claim	
identify & quantify risks	accurately price the technology	compensate claimants fairly & efficiently	

Agenda

- Automated Vehicles Background
- Regulatory overview
- Insurance Industry Impact
- Automated Vehicle Risk Profile
- Vehicle Symbol Analysis
- Upcoming Projects

Agenda

- Automated Vehicles Background
- Regulatory overview
- Insurance Industry Impact
- Automated Vehicle Risk Profile
- Vehicle Symbol Analysis
- Upcoming Projects

Current test vehicles are working towards level 3 and 4 automation

Level	Brief Description
Level 0	No automation
Level 1	Function specific automation
Level 2	Combined function automation
Level 3	Limited self-driving automation
Level 4	Full self driving automation

Most estimates have AVs entering the market within the next decade

Three main technologies will work together for AVs

Vehicle to Vehicle or Vehicle to Infrastructure using **V2V/V2I Dedicated Short Range Communications** Light Detection And Ranging Lidar combination of light and radar, and uses laser light to create 3D images Remote sensing technology to measure distances ۲ Inertial INS uses computers, accelerometers (motion), and Navigation gyroscopes (rotation) Systems & GPS Calculates position, orientation, and velocity

Comments

Developments in AV technology have ramped up in recent years

 • 05: Stanford wins DARPA Grand Challenge • 07: CMU wins DARPA Urban Challenge • 09: Google • 07: Stanford vesting self driving car on public roads • Nissan opens research facility in Silicon Valley • NV passes autonomous car law • NV passes autonomous autonomous car law • NV passes autonomous autonomous autonomous of the car law • NV passes autonomous autonomous of the car law • NV passes autonomous autonomous of the car law • NV passes autonomous autonomous of the car law • NV passes autonomous autonomous of the car law • NV passes autonomous autonomous of the car law • NV passes autonomous autonomous of the car law • Mercedes autonomous of the car law • Mercedes autonomous of the car law 	2005 – 2010	2011	2012	2013	2014
 begins testing on public roads O9: EU launches Project SARTRE 10: Volvo City Safe standard Car licenses • FL & CA pass autonomous car laws Audi receives AV car license Audi receives AV car license NHTSA issues policy on AVs DC passes AV car law 	 05: Stanford wins DARPA Grand Challenge 07: CMU wins DARPA Urban Challenge 09: Google begins testing on public roads 09: EU launches Project SARTRE 10: Volvo City Safe standard 	 BMW begins testing self driving car on public roads NV passes autonomous car law 	 Nissan opens research facility in Silicon Valley Google & Continental receive autonomous car licenses FL & CA pass autonomous car laws 	 Oxford creates a \$7,750 self- driving system Public road testing Britain Mercedes CMU Audi receives AV car license NHTSA issues policy on AVs DC passes AV car law 	<list-item><list-item></list-item></list-item>

2015 has already had many new investments in AVs(1/2)

Comments

Audi and Nvidia	 Developing uses for Tegra X1 chips to compute and process the
January 2015	data from sensors and cameras
Nissan and NASA	 Researching autonomous driving technology for both roads as
January 2015	well as space exploration missions
Uber and Carnegie Mellon B February 2015	 Strategic partnership including Uber Advanced Technologies Center, will focus on development of long term technologies
Apple February 2015	 Apple reportedly working on its own AV Apple reportedly poaching Tesla and A123 engineers

Cameras and Deep Learning may be another technology NVIDIA @ CES 2015

<u>https://www.youtube.com/watch?v=o29TB</u>
 <u>y2a0ek</u>

Uber has continued expanding its advanced robotics team in 2015

2015 has already had many new investments in AVs(2/2)

Comments

Sony and ZMP February 2015	 ZMP, Japanese company makes 'robot cars' Sony's image sensors and ZMP's robotics to make AV 		
Delphi April 2015	 3,400 mile cross country trip with 99% of miles in autonomous mode 		
Mercedes April 2015	 Nevada licenses Mercedes' Freightliner truck with adaptive cruise control and steering assist Hits the road in May 2015 		
Cruise Automation June 2015	 Developing aftermarket highway autopilot system (RP-1) Uses millimeter-wave radar, stereo video cameras, GPS, and inertial sensors 		

The Mercedes truck allows drivers limited freedom while driving

С

Every year brings new research opportunities

University of Michigan D Spring 2015	 32 acre testing facility for V2V, V2I, and AV Support 2,800 connected vehicles in Ann Arbor in pilot and 9,000 within 3 years
Singapore Spring 2015	 6km test route in real traffic Approved vehicles get one year license for testing Located in One North Business Park
Virginia Automated Corr. 2015	 32 acre testing facility for V2V, V2I, and AV Support 2,800 connected vehicles in Ann Arbor in pilot and 9,000 within 3 years
A9 Autobahn: Bavaria 2016 or later	 V2V and V2I for AV, similar to Michigan facility A9 Connects Munich to Berlin
Volvo: Gothenburg 2017	 100 self driving cars on the road by 2017 Array of sensors for AV on highways No AV in inclement weather

AV ownership may change household car ownership patterns

University of Michigan:

2009 National Household Travel Survey from U.S. DOT

- 84% of U.S. household trips today do not overlap with other trips
 - Only 16% of households require 2+ cars

Does not contemplate

- Additional miles from 'return to home' feature
- Additional miles if 'non-drivers' can operate vehicle for transportation
- Many commuters do not want to share vehicle

http://www.umich.edu/~umtriswt/PDF/UMTRI-2015-3_Abstract_English.pdf

London's AV testing regulations may increase investment

- Light-touch non-regulatory approach
- provides clarity for industry to invest in further in research

London had 3 trials underway

UK Autodrive Programme: 3 years to pave way for introduction of AVs Dept. of Transportation put ~\$29M USD for trials Explore both legal and technical changes required for Autonomous Vehicles

Milton Keyes and Coventry

- Lutz Pods that drive in pedestrian zones
- Max speed 15 mph
- Electronic AV

Greenwich

- GATEway shuttles
- Electronic AV
- Local tour with drop off points: input destination on CPU

Bristol

- Venturer consortium will investigate congestion and safety
- BAE Wildcat

Overall future development may create two models for AVs

All driving, limited location

- End to end service
- Fully automation
- Only operates in specified area
- "Taxi" service
- Google, Uber

Some driving, all locations

- Takes over some of the driving in specified areas
- E.g. Supercruise, parallel parking
- Driver owns and operates
- Mercedes, BMW, Volvo, Cadillac, Telsa

Agenda

- Automated Vehicles Background
- Regulatory overview
- Insurance Industry Impact
- Automated Vehicle Risk Profile
- Vehicle Symbol Analysis
- Upcoming Projects

Current U.S. regulatory approach varies by state

Regulations will also come from national and international markets

<u>National</u>

May 2013 - NHTSA

- Guidance to states on AV regulations
- NHTSA outlines plans for testing AV technology

May 2015

 NHTSA fast tracks V2I and V2V legislation

International (EU)

- Germany's Federal Government defines the long-term objectives for digitalization in Europe and beyond
 - Legal framework
 - Road Traffic Regulation
 - Liability
 - Product Safety
 - IT-Security and privacy

National and international regulations will shape the development of AV technology

Agenda

- Automated Vehicles Background
- Regulatory overview
- Insurance Industry Impact
- Automated Vehicle Risk Profile
- Vehicle Symbol Analysis
- Upcoming Projects

Loss frequency is expected to decrease

While severity increase, due to embedded technology

Overall losses are expected to decrease by 40%

The decrease in loss is projected to have a larger impact on personal auto

Insurers have been taking actions to better prepare themselves for AVs

Pricing Adjustments	 Proprietary coverage level vehicle symbols
Patented Pricing Approaches	 State Farm: Trip-Based Insurance Pricing Plan (2015) Travelers: "Risk-Zone" Pricing (2014) Progressive: Vehicle sensor approach (2012)
Partnerships with manufacturers	 Ford, State Farm, & U of Michigan – Ford Hybrid automated research vehicle (Dec 2013) Honda & major insurance company sign agreement to use self-driving automobile test track at former Concord Naval Weapons Station (March 2015)
Testifying at hearings	 CA DOI: State Farm & Nationwide & CAS AVTF¹ NJ Senate: Munich Re America

Illustrative example of road map for autonomous vehicles and insurance

Introduction to market and insurance may be simultaneous

Agenda

- Automated Vehicles Background
- Regulatory overview
- Insurance Industry Impact

Automated Vehicle Risk Profile

- Vehicle Symbol Analysis
- Upcoming Projects

"93% of accidents are caused by human error..."

NMVCCS¹ shows that there are technological and behavioral factors that limit ability to reach the 93% theoretical limit

(1) National Motor Vehicle Crash Causation Study

NMVCCS – Implications of the CAS Study

Comments

New benchmark Data is old and unrepresentative • should be Human driving risks <> automated vehicle risks calculated Computer simulations for technology's error rate Appropriate test Simulations provide little insight into driver's actual use of for each risk technology 1% reduction in accidents is ~55k fewer accidents and \$1.4 billion ۲ of economic value per year **Policy changes** can increase AV's Policy cost benefit analysis safety E.g. driver training program, automated vehicle only lanes, allowing the AVs to speed

Agenda

- Automated Vehicles Background
- Regulatory overview
- Insurance Industry Impact
- Automated Vehicle Risk Profile
- Vehicle Symbol Analysis
- Upcoming Projects

Vehicle symbol analysis approach

	Comments
Vehicle experience groups	 Each group's experience is weighted and combined with similar vehicles
Complements to credibility	 Vehicle's body style factor Prior year factor
Automated vehicle symbol: option 1	 Assume a brand new vehicle e.g. Mercedes introduces a new fully automated vehicle No initial prior year factor, growth trend impacts credibility
Automated vehicle symbol: option 2	 Assume update to a current vehicle e.g. all new Honda Civics sold with AV equipment

Vehicle Symbol Calculation will got give enough credibility to new technology (1/2)

vehicle sym option 1	ed 1bol: 1	 Assume a brand new vehicle e.g. Mercedes introduces a new fully automated v No initial prior year factor, growth trend impacts credibility 				
Vehicle Symbol Discount						
Number of			Los	s Attenuat	ion	
Exposures	Year	0%	25%	50%	75%	100%
2,500	1	0.0%	0.5%	0.9%	1.3%	1.8%
5,000	2	0.0%	1.4%	2.6%	3.9%	5.1%
7,500	3	0.0%	2.8%	5.1%	7.4%	9.7%
10,000	4	0.0%	4.4%	8.0%	11.6% 🕻	15.2%

Vehicle symbol calculation will not recognize benefits fast enough

. . .

Vehicle Symbol Calculation will got give enough credibility to new technology (2/2)

Automated vehicle symbol: option 2

- Assume update to a current vehicle
 - e.g. all new Honda Civics sold with AV equipment

Vehicle Symbol Discount						
		Loss Attenuation				
Year	0%	25%	50%	75%	100%	
1	0.0%	4.3%	7.4%	10.5%	13.6%	
2	0.0%	7.1%	13.7%	20.0%	26.3%	
3	0.0%	9.7%	18.2%	25.7%	35.4%	
4	0.0%	11.1%	21.0%	31.0%	41.2%	

Vehicle symbol calculation will not recognize benefits fast enough

Agenda

- Automated Vehicles Background
- Regulatory overview
- Insurance Industry Impact
- Automated Vehicle Risk Profile
- Vehicle Symbol Analysis

Upcoming Projects

Upcoming project: Calculating the average accident rate for a driver

"One of the most important things we need to understand in order to judge our cars' safety performance is 'baseline' accident activity on typical suburban streets.

Quite simply, because many incidents never make it into official statistics, we need to find out how often we can expect to get hit by other drivers."

- Chris Urmson, Director of Google's Self-Driving Car Project

To calculate the average accident rate, NHTSA data is only a starting point

Issues with NHTSA data	 Only include police reported accidents Cannot segment by driver type

	•	Calculate frequencies for different driving segments
Insurance Data	•	Can more accurately define "good driver"
	•	GLM's lead to a more stable & accurate calculations

Match location & type	
• Match driver characteristics	

Studying the differences between Auto Liability vs. Products Liability will help choose the efficient insurance product

Goal: Quantify the change in costs from liability systems

Scenarios

.	Assumes	no cha	nge in	accidents
---	---------	--------	--------	-----------

2 Assumes accident frequency is reduced by X%

3 Assume there is a liability cap of \$Z

4 Assume some combination of scenario 2 and scenario 3

Initial indications show products liability would increase cost relative to private passenger auto

Metric	
ALAE Factor	
Permissible Loss Ratio	
Accident Classification	
Liability Limits	
Settlement Lag	
Unnecessary Coverages	

Questions and Discussion

Appendix

Notes

- Google Cash and Short term investments 3/31/15: \$65.44 Billion
- Apple has \$194 bill in Cash & investments in Cash (4/28/15)
- Progressive market cap: \$15.88 billion (4/4/15)
- Allstate market cap: \$28.61 billion (4/4/15)
- Ace Mkt Cap: \$35.08 billion (4/4/15)
- QBE Mkt cap: \$18.71 billion (4/4/15)
- Ford Mkt Cap: \$62.7billion
- GM mkt Cap: \$57.18bil
- Tesla Mkt cap: \$18.71 bil
- Nissan \$43.6 bill
- Volvo \$28.94bil

Google could buy Progressive, Volvo, and tesla and still have \$1.9 billion of cash left. Google could buy Progressive, Allstate, and tesla and have \$2.24 billion left over Google could buy Ace and volvo and have \$1.42 billion left over. Google could buy Ace and Tesla and have \$11.65 billion let over.

Apple could buy progressive, tesla, volvo, GM, and ford and still have \$10.59 billion Apple could buy progressive, ace, GM, Tesla, and volvo and still have \$38.21 billion

