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Motivation

Misrepresentation (see, e.g., Winsor [1995]) is a type of
insurance fraud when the applicant chooses to give a false
statement on a risk factor that may affect the eligibility or
rates of insurance (e.g., traffic violation history, annual
millage, use of vehicle, smoking status and age in auto
insurance).

In practice, insurance companies usually do not verify
information provided by the applicant.

Due to the financial incentive, misrepresentation happens
frequently.

Misrepresentation is unidirectional and usually unobserved.
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Ratemaking

In insurance ratemaking, actuaries determine auto insurance rates
based on generalized linear models between historical losses and
risk factors such as use of vehicle, annual millage, traffic violation,
claim history, age, location and smoking status. For example, in
personal auto ratemaking, we can specify a multiplicative model
such as

log(E (Y )) = use+millage+violation+claim+credit+age+gender+· · · ,

where E (Y ) can be the expected collision loss for the individual in
a policy year.
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Misrepresentation and ratemaking

In a traditional ratemaking model, misrepresentation will
result in an underestimation of the risk/association. The
estimated relativity will be smaller than that is indicated by
the loss experience.

Misrepresentation is usually unobserved, with the confirmed
cases typically different to the unconfirmed ones (i.e.,
selection bias). Hence, from standard models we cannot
estimate the probability of mispresentation or the correct
relativity corresponding to the risk factor.

When the risk factors are correlated, it could also lead to a
bias in the estimation of the relativity for other risk factors.
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Misrepresentation mechanism

Suppose

There is a binary rating factor (e.g., smoking status) subject
to misrepresentation

p = probability of misrepresentation

V = true binary risk status that we are not able to observe

V ∗ =observed variable with a certain probability of
misrepresentation

We can write the conditional probabilities as

P(V ∗ = 0 |V = 0) = 1

P(V ∗ = 0 |V = 1) = p. (1)
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Misrepresentation on smoking status

Smokers

(a) Report smoking

None−smokers

Smokers

(b) Report nonsmoking

Figure: Here, we usually do not observe the true status, hence cannot
directly learn the probability of misrepresentation.
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Simplified example on smoking and health claim

Suppose the smoking status (V ) is the only risk factor that
will affect the severity of a health insurance claim.

We assume that the logarithm of loss (in thousands)

log(Y ) ∼ N(1, 1) when V=0

log(Y ) ∼ N(5, 1) when V=1. (2)

Now let us do an audience survey regarding the smoking
status and health claim severity.
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Audience survey on smoking and health claim

In order to avoid having no smoker in the audience, we are just
going to use a makeup status as follows.

1 Randomly pick a true smoking status V = Yes or V = No,
write it down without saying it.

2 If V = No, then simply set your observed V ∗ = No. Write
write it down without saying it.

3 If V = Yes, then pick a number between 1 to 10. If the
number is smaller than 4 (p = 0.3), then pick the observed
V ∗ = No (misrepresent). Otherwise, set V ∗ = Yes (true
status). Write down your observed status V ∗, but DONOT
say it.

4 Pick a number between 1 between 24 and write it down. Now
depending on whether your true status is V = Yes or
V = No, find your corresponding loss from the distribution
table.
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Ratemaking data structure
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Figure: Loss experience by reported smoking status under ratemaking
models, when comparing individuals with same other risk
characteristics.
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A general framework

Suppose (Y |V , x) follows a distribution in the exponential family
with a probability function fY (y |α, β, ϕ, V , x) (e.g., in a
regression model). Assume that the misrepresentation is
non-differential (i.e., (Y ⊥ V ∗ |V , x) and (x ⊥ V ∗ |V )). In
addition, assume (x ⊥ V ), then we can write the conditional
distribution of the observed variables as

fY (y |V ∗ = 1, x) =fY (y |α, ϕ, V = 1, x)

fY (y |V ∗ = 0, x) =q(x)fY (y |α, ϕ, V = 1, x)

+ (1− q(x))fY (y |α, ϕ, V = 0, x), (3)

where q(x) = P(V = 1|V ∗ = 0, x) = θ p(x)/[1− θ(1− p(x))],
p(x) = P(V ∗ = 0|V = 1, x) is the probability of misrepresentation,
and θ is the binomial proportion for the true status V .
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Health insurance model and assumptions

For health insurance, we specify a regression structure that
characterizes the relationship between medical losses and
true risk profiles such as age, location and smoking status.

We assume there is a latent mechanism on the
misrepresentation of smoking status, and we know the
direction of error.

In addition, we can specify an embedded predictive model
that associate the probability of misrepresentation to the age
variable.

In more complicated cases, the risk factors can be selected or
tested, like in the case of regular regression analysis.

Michelle Xia, Lauren Anglin and Gary Vadnais (NIU & Intact) 11/34



Introduction Data and model Simulation study MEPS case study Concluding remarks

Example: Claim frequency model

Denote V as the true status of prior condition, V ∗ as the
observed smoking status with misrepresentation, x as a vector of
K other correctly reported risk factors, and Y as the number of
health claims in a policy year. Then we can use the negative
binomial model given as

(Y |V , x) ∼ negbin (ϕ, βV , x)

log(βV , x) = α0 + α1V + α2X1 + · · ·+ αK+1XK

(V ∗ |V , x) ∼ Bernoulli((1− p(x))V ), (4)

where ϕ is the dispersion parameter, and βV , x is the conditional
mean of the negative binomial distribution given V and x.

Here fY (y |α, β, ϕ, V , x) is the negative binomial pmf with
α = (α0, α1, · · · , αK+1), β = ∅, and ϕ = ϕ.
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Predictive analysis on misrepresentation

For the predictive analysis on the misrepresentation risk, we can
embed a binary regression model in the models given in Equation
(4). Denote z as a vector of rating factors that is a subset of x and
p(x) = P(V ∗ = 0 |V = 1, x), we can assume

logit(p(x)) = β0 + zβ. (5)

Using the Bayes’s Theory, we can derive the the model for
q(x) = P(V = 1|V ∗ = 0, x). That is,

logit(q(x)) = β∗0 + zβ, (6)

where β∗0 = logit(θ) + β0, β0 is an intercept and the vector β
contains the effects of the rating factors on the misrepresentation
log odds in the logistic model on p(x).
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Three scenarios

We use the Poisson model as an example, and perform a
simulation study for the three scenarios:

Poisson model with an additional risk factor that is correctly
measured

Poisson model with two risk factors subject to
misrepresentation

Poisson model with an embedded model on the
misclassification probability.
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Three models compared

With a sample size of 1000, we compare the performance of three
models:

True model where we assume the true status V is observed

Naive model where we ignore the misrepresentation and use
V ∗ in place of V

Posterior model where we model the relationship of Y and
V ∗ using the proposed method
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Bayesian inference and non-informative priors

We use Bayesian inference based on Markov chain Monte Carlo
(MCMC) simulations, and assume non-informative priors for all
the parameters in the models.

αj ∼ N(0, 10)

p ∼ U(0, 1)

q ∼ U(0, 1)

θ ∼ U(0, 1)

βj ∼ N(0, 10).
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Additional risk factor: effect on misrepresented risk factor

0.2 0.4 0.6 0.8 1.0 1.2

0
5

10
15

20
25

α1

D
en

si
ty

True model
Naive
Posterior
True value

(a) p = 0.25

0.2 0.4 0.6 0.8 1.0 1.2

0
5

10
15

20
25

α1
D

en
si

ty

(b) p = 0.5

Figure: Distribution of posterior samples for α1 for the Poisson model.
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Additional risk factor: misrepresentation probability
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Figure: Distribution of posterior samples for p for the Poisson model.
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Multiple risk factors: effect on misrepresented risk factor I
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Figure: Distribution of posterior samples for α1 for the Poisson model.
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Predictive model: effect on correctly reported risk factor
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Figure: Distribution of posterior samples for α2 for the Poisson model.
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Predictive model: misreprentation model slope
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Figure: Distribution of posterior samples for β1 for the Poisson model.
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Messages

The naive model gives biased estimates on the effect α1,
with relativity being exp(effect).

The proposed model gives results that are similar to those
from the true model.

The proposed model allows estimation of the
misrepresentation probability, or the covariate effects on the
misrepresentation probability when an embedded model is
specified on the probability.
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Medical Expenditure Panel Survey

The Medical Expenditure Panel Survey (MEPS) is a set of
national surveys on the frequency, cost and source of
payment for the health services that Americans use.

For the case study, we include insured reference individuals
aged from 18 to 60 inclusive, who are white and have a
normal BMI between 18.5 to 30.

The loss variables of interest Y are total medical charges
(positive only) and number of office-based visits. The
sample sizes for the two variables are 2948 and 3249,
respectively.

The variable V that is subject to misrepresentation is the
smoking status.

The additional covariate X is the age of the individual.

In the embedded model, we assume that the probability of
misrepresentation varies with age.
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Objectives of study

When modeling loss frequency (office-based visits, using negative
binomial GLM) and severity (total medical charges, using gamma
GLM),

how does the adjustment of misrepresentation affect the
estimated relativity for age and smoking status?

how does the probability of misrepresentation in smoking
status change with the age?

given the age, what is the probability of misrepresentation for
individuals who reported nonsmoking, i.e., P(V = 1|V ∗ = 0)?
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Healthcare expense risk factors
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Figure: Credible intervals for the effect of smoking and age, for the
office-based visits and total medical charges.
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Misrepresentation risk factor
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Figure: Credible intervals for age effect on odds of misrepresentation,
and the estimated misrepresentation probability p(x) for individuals
at the average age.
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Predictive model on misrepresentation probability
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Figure: Predicted probability of misrepresentation for individuals who
reported nonsmoking q(x) = P(V = 1 |V ∗ = 0, X = x).
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How to use the model in GLM ratemaking?

In GLM ratemaking,

the model uses regular ratemaking data, without requiring
additional information on the misrepresentation.

start with a GLM ratemaking model for loss frequency or
severity, including various risk factors.

embed a latent model on the probability of
misrepresentation, with risk factors that may be predictive
of the probability.

based on the embedded model fitted on historical data,
predict the probability of misrepresentation for each new
policy where the applicant denies the risk status.

Thus, insurance companies may put more resources for
investigating policies with a higher probability of
misrepresentation, while ensuring the rates are fair with more
accurate relativity estimated from the model.

Michelle Xia, Lauren Anglin and Gary Vadnais (NIU & Intact) 28/34



Introduction Data and model Simulation study MEPS case study Concluding remarks

Summary of work

Predictive analysis on misrepresentation probability, e.g., by
specifying a binomial logistic regression model on the
misrepresentation probability p

Inclusion of additional risk factors that are correctly measured

Inclusion of multiple factors that are subject to
misrepresentation
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Take-home messages

When unadjusted, misrepresentation in risk factors will result
in an underestimation of the risk (e.g., relativity), in
traditional GLM ratemaking models.

Predictive analysis on the misrepresentation risk is possible by
embedding a binomial logistic regression model on the
probability of misrepresentation.

The model can be implemented either using Bayesian
analysis using MCMC, or Maximum likelihood estimation
based on the Expectation Maximization algorithm.

The method uses regular ratemaking data, without requiring
additional information on the mirepresentation.

The model provides more accurate rates, as well as predictive
analysis on the misrepresentation probability.
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Ongoing research

Simulation study with other distributions

Theoretical identification based on observable moments

Misrepresentation on ordinal risk factors (Sun, et. al., 2016)

Likelihood based inference with Expectation Maximization
(EM) algorithm (Akakpo and Xia, 2016)
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Questions and comments

Thank You:)
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