A Linear Approximation To Copula Regression

Paul G. Ferrara Tokio Marine

Rahul A. Parsa Iowa State University

Bryce A. Weaver James Madison University

14 Nov 2016

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Special Thanks:

- This work was funded by:
 - The Casualty Actuarial Society
 - The Actuarial Foundation
 - Committee on Knowledge Extension Research (CKER) of the Society of Actuaries
- Special thanks to Stuart A. Klugman
 - for his help on this paper, and for sharing many prescient insights over the years.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Outline:

- 1. Review the Parsa-Klugman version of Copula Regression.
- 2. A linear approximation to Copula Regression.
- 3. Comparison of the linear approximation vs. Copula Regression estimates.
- 4. Convexity of Transmutation mappings.
- 5. New results:
 - General requirements for the convexity of *Transmutation maps*.

- The 2-parameter Pareto Distribution
- The Gamma Distribution
- 6. Next steps....

Parsa & Klugman (2011) Copula Regression

Parsa & Klugman describe the concept of Copula Regression under a *Multivariate Normal* Copula.

▶ i.e. the joint CDF of the variables $x_1, x_2, ..., x_{n-1}, y$ is:

 $F(x_1, x_2, \dots, x_{n-1}, y) = G\left(\Phi^{-1}[F_1(x_1)], \dots, \Phi^{-1}[F_{n-1}(x_{n-1})], \Phi^{-1}[F_y(y)]\right)$

- ▶ Where G is a *multivariate normal* cumulative dist. function(CDF).
- y denotes the dependent variable.
- Where F_y is the CDF of y
- Where $F_1, F_2, \ldots, F_{n-1}$ are the CDFs of $x_1, x_2, \ldots, x_{n-1}$.
- All variables $y, x_1, x_2, \dots, x_{n-1}$, are assumed to be *continuous*

The Parsa-Klugman version of Copula Regression:

The copula regression *estimate* of *Y* given $\mathbf{X} = \{x_1, x_2, \dots, x_{n-1}\}$, is:

$$\flat \quad \hat{y} = E_{f_{MVNC}} \left[Y \mid \mathbf{X} = \mathbf{x} \right]$$

▶ where the expected value, $E_{f_{MVNC}}$, is taken WRT the conditional density $f(y \mid x_1, x_2, ..., x_{n-1}) =$ $= \frac{1}{\sqrt{1 - \vec{r}^T \cdot R_{n-1}^{-1} \cdot \vec{r}}} \cdot f_y(y) \cdot \exp\left\{-\frac{1}{2}\left[\frac{\left(\Phi^{-1}[F_y(y)] - \vec{r}^T \cdot R_{n-1}^{-1} \cdot y^*\right)^2}{1 - \vec{r}^T \cdot R_{n-1}^{-1} \cdot \vec{r}} - \left(\Phi^{-1}[F_y(y)]\right)^2\right]\right\}$

- where $v^* = \{v_1, v_2, \dots, v_{n-1}\}$ with $v_i = \Phi^{-1}[F_i(x_i)]$ for $i = \{1, 2, \dots, n-1\}$ and $v_n = \Phi^{-1}[F_y(y)]$.
- R_{n-1} is the correlation matrix of x_1, x_2, \dots, x_{n-1}

$$\vec{r} = (r_{y,x_1}, r_{y,x_2}, \dots, r_{y,x_{n-1}})^T$$

Comparison with other regression techniques:

- Similar to Ordinary Least Squares(OLS) regression, and GLMs:
 - The conditional mean of the response variable is some function of a linear combination of the covariates

 $\hat{y} = E[Y \mid \mathbf{X} = \mathbf{x}]$

• ... i.e. Identity link-function.

- Differs from OLS and GLMs:
 - Dependence between the independent variable and *each of* the dependent variables, is induced from a *MVN Copula*.
 - Each variable can be fitted to it's own *best-fitting* marginal distribution.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Moreover, *heavy-tailed* distributions may be used for the marginals.
- No need to use distributions from the *Exponential Family*.

Motivation for: A Linear Approximation To Copula Regression, Variance 2015

a question posed to Dr. Parsa & Klugman (shortly after the debut of their *Copula Regression* paper) at the *Spring 2011 CAS meeting*!

Question?

Why don't you just do an OLS regression of v_n on $v_1, v_2, ..., v_{n-1}$ and then *transform* the results back?

- where $v_i = \Phi^{-1}[F_i(x_i)]$ for i = 1, 2, ..., n-1
- and $v_n = \Phi^{-1}[F_y(y)]$

..... their initial reaction was, this cannot possibly work... can it?

Details: proposed linear approximation to Copula Regression:

- 1. Transform each of the *n* variables:
 - $U = \Phi^{-1}[F_y(y)]$ and $V_i = \Phi^{-1}[F_i(x_i)]$ for $i = \{1, 2, ..., n-1\}$
- 2. Perform an ordinary OLS of U on the V_i , to obtain \hat{U} :
 - $\blacktriangleright \quad U = \beta_0 + \beta_1 \cdot V_1 + \dots + \beta_{n-1} \cdot V_{n-1} + \epsilon$
 - where $\epsilon \propto N(0,1)$
- 3. Then transform the \hat{U} back to the original scale, to obtain the estimate \hat{Y} :
 - $\bullet \quad \hat{Y} = \left(F_y^{-1} \circ \Phi\right)(\hat{U})$

Some benefits of the approximation would be:

- easy to implement can be done in Excel.
- OLS is well understood.
- Transformations are common within OLS Regression (.... though, as we may see the repercussions may not always be considered...)

Initial investigation of the linear approximation:

Hence: Dr Parsa set out to confirm the initial scepticism of the approximation.

- Both copula regression, and the *linear approximation*, were fit to several datasets.
- ... the difference between the estimates (from the two models) was analyzed.

..... it turns out, that this approximation is, often, not that bad!

- the estimates from the *linear approximation* were *surprisingly close* to those from Copula Regression.
- Moreover, they seem to *consistently underestimate* (across the whole range of the independent variables x_1, x_2, \dots, x_{n-1}) those from Copula Regression.

Comparison of estimates from Copula Regression and a linear approximation:

... so the question became, was this a coincidence?

Or, is there some *systematic bias* in the estimates from the approximate method, verses those from Copula Regression?

... as a new professor at Drake University, Dr. Parsa asked me to:

1. determine if this *bias* was just an artifact of the samples that he had examined?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2. (if not) if I could *prove* what conditions were causing this *systematic bias*?

Writing (regular) Copula Regression in terms of transformations:

Result 1:

If $F_y(y)$, and $F_i(x_i)$ for $i = \{1, 2, ..., n-1\}$ are continuous CDF's, corresponding to the RV's *Y*, \vec{X} , where $\vec{X} = \{X_1, X_2, ..., X_{n-1}\}$,

then:

 $E(Y|\vec{X}) = E\left[(F_y^{-1} \circ \Phi)(U|\vec{V})\right]$

where

$$U = \Phi^{-1}[F_y(y)]$$
 and $V_i = \Phi^{-1}[F_i(x_i)]$ for $i = \{1, 2, \dots, n-1\}$

Note: $(F_v^{-1} \circ \Phi)()$ can be viewed as a transformation of $U | \vec{V}$.

- Albeit, a non-trivial transformation
 - F_{y}^{-1} is the *quantile function* of the distribution of *Y*.
 - Φ is the *CDF* of the *Standard Normal* distribution.

Comparison: Copula Regression and the Linear Approximation:

So we have that:

Estimates from Copula Regression:

 $E(Y|\vec{X}) = E\left[(F_y^{-1} \circ \Phi)(U|\vec{V})\right]$

► The estimates from the *Linear Approximation* are: $\hat{Y} = (F_v^{-1} \circ \Phi) (E(U | \vec{V}))$

So any bias can be ascribed to the *transformation* $(F_v^{-1} \circ \Phi)()$...

... this has implications regarding the use of transformations, in general, within regression models...

Comparison of estimates from Copula Regression and a linear approximation:

... Seems like a natural candidate for Jensen's Rule:

Observation 1:

If:

1. $F_y(y)$, and $F_i(x_i)$ for $i = \{1, 2, ..., n-1\}$ are continuous CDF's, corresponding to the RV's Y, \vec{X} , where $\vec{X} = \{X_1, X_2, ..., X_{n-1}\}$, and:

2. and, the mapping $(F_y^{-1} \circ \Phi)(\cdot)$ is *convex*,

Then:

 $E\left[(F_{y}^{-1}\circ\Phi)(U|\vec{V})\right] \geq (F_{y}^{-1}\circ\Phi)\left(E(U|\vec{V})\right)$

where

 $U = \Phi^{-1}[F_y(y)]$ and $V_i = \Phi^{-1}[F_i(x_i)]$ for $i = \{1, 2, \dots, n-1\}$

Convexity of the transformation:

Hence, the *systematic* nature of the bias can be established *if* it can be proven that $(F_v^{-1} \circ \Phi)(\cdot)$ is *convex*.

• needs to be *convex* over the whole real line \mathbb{R} .

The mappings $(F_y^{-1} \circ \Phi)(\cdot)$ send the *percentiles* of Φ to the corresponding *percentile* of F_y . (coined *Transmutation mappings* by *Shaw et.al.*)

- were first investigated by *Cornish & Fisher* in 1937.
 - ► The origin of *Cornish-Fisher* (*C*-*F*) expansions
 - ... *approximate* method: estimates the quantiles of distributions, F(x), from known moments.
- ▶ more recently studied in the "Quantile Mechanics" (I, II, and III):
 - Steinbrecher & Shaw 2008, Shaw & Brickman 2010, Munir & Shaw 2012

 ... research pointed out (to authors) by *Vytaras Brazauskas*, from the University of Wisconsin. Convexity of Transmutation mappings, cont....:

But the results of *Shaw et.al.* (*King's College*, London) do *not* help prove *convexity* of $(F_v^{-1} \circ \Phi)$:

- Quantile Mechanics I, II, and III, only approximations to $(F_v^{-1} \circ \Phi)(\cdot)$ are used.
- No (or very few) analytical proofs, and certainly not regarding *higher-order* properties such as convexity.

However, we need to prove that $(F_{v}^{-1} \circ \Phi)(\cdot)$ is convex, *analytically*:

- $\Phi(x)$, by itself, is equivalent to the (non-elementary) special function the *Error function*.
- \blacktriangleright F_y , is often, also, a (non-elementary) special function....

.. hence, dealing with a composition of two special functions.

In general, *no* (rigorous, analytical) proofs regarding *convexity* of $(F_y^{-1} \circ \Phi)$ exist in the literature.

General criterion: convexity of Transmutation maps:

Result 2:

Let:

- f(x) be a continuous density, corresponding to F(x), and:
- $\Phi(x)$ be the *CDF* of the *standard normal* distribution, and:

►
$$y(x) = (F^{-1} \circ \Phi)(x).$$

Then, the following (equivalent) conditions imply *convexity* of y(x), for all x:

▲□▶▲□▶▲□▶▲□▶ □ のQで

- $f'(y(x)) \leq \frac{\phi'(x)}{\phi^2(y(x))} \leq \frac{\phi'(x)}{\phi^2(x)}$ for all x, (where $f'(y(x)) = \frac{d}{dz}f(z)\Big|_{z=y(x)}$)
- $\frac{d}{dx} \ln[f(y(x))] \le \frac{d}{dx} \ln(\phi(x))$ for all x.

Results for common loss distributions:

Result 3:

Let:

- f(x) be a *lognormal* distribution, with parameters μ , σ
- $\Phi(x)$ be the *CDF* of the *Standard Normal* distribution

Then:

 $y(x) = (F^{-1} \circ \Phi)(x)$ is *convex* for all *x*, and all μ , and σ

Result 4:

Let:

- f(x) be a two-parameter **Pareto** distribution with parameters α , θ
- $\Phi(x)$ be the *CDF* of the *Standard Normal* distribution

Then:

 $y(x) = (F^{-1} \circ \Phi)(x)$ is *convex* for all x, and all α , θ

The Gamma distribution:

Proving the convexity of $(F^{-1} \circ \Phi)(x)$ when $F(\cdot)$ the *Gamma distribution* (regularized incomplete gamma function), is *much more difficult*.

- ▶ The CDF of the Gamma is an *especially* intractable special function:
 - Tricomi fondly referred to it as "the Cinderella of special functions"
- ... can be represented in terms of various special functions:
 - Confluent Hypergeometric function, Bessel functions, etc..
- Related to a famous conjecture of *Ramanujan*'s (circa 1913):

• ... that $\frac{1}{3} < \theta(n) < \frac{1}{2}$ (for any *n*) in the following equality $\frac{e^n}{2} = \sum_{k=0}^{n-1} \frac{n^k}{k!} + \theta(n) \frac{n^n}{n!}$

• Choi (1994) proved that
$$1 - \theta(\alpha) = \left(\frac{e}{\alpha}\right)^{\alpha} \int_{\alpha}^{m(\alpha+1)} t^{\alpha} e^{-t} dt$$

where $m(\alpha + 1)$ is the median of a gamma distribution with shape parameter $\alpha + 1$.

The Gamma distribution:

.. to make matters worse $(F^{-1} \circ \Phi)(x)$ involves the *quantile function* (inverse) of the *CDF* of the Gamma distribution..

$$F_{\alpha}^{-1}(z) = [-(z-1)\Gamma(\alpha+1)]^{\frac{1}{\alpha}} + \frac{\left([-(z-1)\Gamma(\alpha+1)]^{\frac{1}{\alpha}}\right)^2}{\alpha+1} + \frac{(3\alpha+5)\cdot\left([-(z-1)\Gamma(\alpha+1)]^{\frac{1}{\alpha}}\right)^3}{2(\alpha+1)^2(\alpha+2)} + O\left((z-1)^{\frac{4}{\alpha}}\right)^{\frac{1}{\alpha}}$$

Result 5:

Let:

- f(x) be a **gamma** distribution with shape parameter α , and scale parameter θ .
- $\Phi(x)$ be the *CDF* of the *Standard Normal* distribution.

Then:

 $y(x) = (F^{-1} \circ \Phi)(x)$ is *convex* for all x, and all α, θ .

Systematic Bias:

... Back to the original question:

Is there some *systematic bias* in the estimates from the approximate method, verses those from Copula Regression?

Answer: Yes...

 If (all) the marginal distributions are modeled using one of the standard loss distributions (*Lognormal*, *Pareto*, or *Gamma*)

.... Further, this holds for any permissible parameter values of the *Lognormal*, *Pareto*, or *Gamma* distributions.

In this case, the estimates from the *Linear Approximation* to Copula Regression will *always*, at least, slightly underestimate the *true* values.

Thanks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?