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Parsa & Klugman (2011) Copula Regression

Parsa & Klugman describe the concept of Copula Regression
under a Multivariate Normal Copula.

I i.e. the joint CDF of the variables x1,x2, . . . ,xn−1,y is:

F(x1,x2, . . . ,xn−1,y) = G
(
Φ−1[F1(x1)], . . . ,Φ−1[Fn−1(xn−1)],Φ−1[Fy(y)]

)
I Where G is a multivariate normal cumulative dist. function(CDF).

I y denotes the dependent variable.

I Where Fy is the CDF of y

I Where F1,F2, . . . ,Fn−1 are the CDFs of x1,x2, . . . ,xn−1.

I All variables y,x1,x2, . . . ,xn−1, are assumed to be continuous



The Parsa-Klugman version of Copula Regression:

The copula regression estimate of Y given X = {x1,x2, . . . ,xn−1}, is:

I ŷ = EfMVNC

[
Y | X = x

]
I where the expected value, EfMVNC , is taken WRT the conditional density

f (y | x1,x2, . . . ,xn−1) =

= 1√
1−~rT ·R−1

n−1 ·~r
· fy(y) · exp

{
− 1

2

[ (
Φ−1[Fy(y)] − ~rT ·R−1

n−1 ·ν
∗
)2

1−~rT ·R−1
n−1 ·~r

−
(
Φ−1[Fy(y)]

)2
]}

I where ν∗ = {ν1, ν2, . . . , νn−1} with νi = Φ−1[Fi(xi)] for
i = {1,2, . . . ,n−1} and νn = Φ−1[Fy(y)].

I Rn−1 is the correlation matrix of x1,x2, . . . ,xn−1

I ~r = (ry,x1 , ry,x2 , . . . , ry,xn−1 )T



Comparison with other regression techniques:

I Similar to Ordinary Least Squares(OLS) regression, and GLMs:
I The conditional mean of the response variable is some function of a

linear combination of the covariates

ŷ = E[Y | X = x]

I ... i.e. Identity link-function.

I Differs from OLS and GLMs:
I Dependence between the independent variable and each of the dependent

variables, is induced from a MVN Copula.

I Each variable can be fitted to it’s own best-fitting marginal distribution.

I Moreover, heavy-tailed distributions may be used for the marginals.

I No need to use distributions from the Exponential Family.



Motivation for: A Linear Approximation To Copula Regression, Variance 2015

a question posed to Dr. Parsa & Klugman (shortly after the debut of their

Copula Regression paper) at the Spring 2011 CAS meeting!

Question?

Why don’t you just do an OLS regression of νn on ν1, ν2, . . . , νn−1 .....

.... and then transform the results back?

I where νi = Φ−1[Fi(xi)] for i = 1,2, . . . ,n−1

I and νn = Φ−1[Fy(y)]

..... their initial reaction was, this cannot possibly work... can it?



Details: proposed linear approximation to Copula Regression:

1. Transform each of the n variables:
I U = Φ−1[Fy(y)] and Vi = Φ−1[Fi(xi)] for i = {1,2, . . . ,n−1}

2. Perform an ordinary OLS of U on the Vi, to obtain Û:
I U = β0 + β1 ·V1 + . . . + βn−1 ·Vn−1 + ε

I where ε ∝ N(0,1)

3. Then transform the Û back to the original scale, to obtain the estimate Ŷ:
I Ŷ =

(
F−1

y ◦Φ
)(

Û
)

Some benefits of the approximation would be:
I easy to implement can be done in Excel.

I OLS is well understood.

I Transformations are common within OLS Regression (.... though, as we may see
the repercussions may not always be considered...)



Initial investigation of the linear approximation:

Hence: Dr Parsa set out to confirm the initial scepticism of the
approximation.
I Both copula regression, and the linear approximation, were fit to several

datasets.

I ... the difference between the estimates (from the two models) was analyzed.

....... it turns out, that this approximation is, often, not that bad!

I the estimates from the linear approximation were surprisingly close to those

from Copula Regression.

I Moreover, they seem to consistently underestimate (across the whole range of the

independent variables x1,x2, . . . ,xn−1 ) those from Copula Regression.



Comparison of estimates from Copula Regression and a linear approximation:

... so the question became, was this a coincidence?

Or, is there some systematic bias in the estimates from the
approximate method, verses those from Copula Regression?

... as a new professor at Drake University, Dr. Parsa asked me to:

1. determine if this bias was just an artifact of the samples that he
had examined?

2. (if not) if I could prove what conditions were causing this
systematic bias?



Writing (regular) Copula Regression in terms of transformations:

Result 1:

If Fy(y), and Fi(xi) for i = {1,2, . . . ,n−1} are continuous CDF’s, corresponding
to the RV’s Y , ~X, where ~X = {X1,X2, . . . ,Xn−1},

then:

E
(
Y | ~X

)
= E

[(
F−1

y ◦Φ
)(

U| ~V
)]

where

U = Φ−1[Fy(y)] and Vi = Φ−1[Fi(xi)] for i = {1,2, . . . ,n−1}

Note:
(
F−1

y ◦Φ
)( )

can be viewed as a transformation of U| ~V .

I Albeit, a non-trivial transformation . . . .

I F−1
y is the quantile function of the distribution of Y .

I Φ is the CDF of the Standard Normal distribution.



Comparison: Copula Regression and the Linear Approximation:

So we have that:

I Estimates from Copula Regression:

E
(
Y | ~X

)
= E

[(
F−1

y ◦Φ
)(

U| ~V
)]

I The estimates from the Linear Approximation are:

Ŷ =
(
F−1

y ◦Φ
)(

E
(
U| ~V

))

So any bias can be ascribed to the transformation (
F−1

y ◦Φ
)( )

...

I ... this has implications regarding the use of transformations, in general, within
regression models...



Comparison of estimates from Copula Regression and a linear approximation:

... Seems like a natural candidate for Jensen’s Rule:

Observation 1:

If:

1. Fy(y), and Fi(xi) for i = {1,2, . . . ,n−1} are continuous CDF’s,
corresponding to the RV’s Y , ~X, where ~X = {X1,X2, . . . ,Xn−1}, and:

2. and, the mapping
(
F−1

y ◦Φ
)
(·) is convex,

Then:

E
[(

F−1
y ◦Φ

)(
U| ~V

)]
≥

(
F−1

y ◦Φ
)(

E
(
U| ~V

))
where

U = Φ−1[Fy(y)] and Vi = Φ−1[Fi(xi)] for i = {1,2, . . . ,n−1}



Convexity of the transformation:
Hence, the systematic nature of the bias can be established ...
.... if it can be proven that (

F−1
y ◦Φ

)(
·
) is convex.

I needs to be convex over the whole real line R.

The mappings
(
F−1

y ◦Φ
)
(·) send the percentiles of Φ to the corresponding percentile

of Fy. (coined Transmutation mappings by Shaw et.al.)

I were first investigated by Cornish & Fisher in 1937.
I The origin of Cornish-Fisher (C-F) expansions
I ... approximate method: estimates the quantiles of distributions, F(x) ,

from known moments.

I more recently studied in the ”Quantile Mechanics” (I, II, and III):
I Steinbrecher & Shaw 2008 , Shaw & Brickman 2010, Munir & Shaw 2012

I ... research pointed out (to authors) by Vytaras Brazauskas, from the
University of Wisconsin.



Convexity of Transmutation mappings, cont....:

But the results of Shaw et.al. (King’s College, London) do not help prove
convexity of (

F−1
y ◦Φ

) :

I Quantile Mechanics I, II, and III, only approximations to
(
F−1

y ◦Φ
)(
·
)

are used.

I No (or very few) analytical proofs, and certainly not regarding higher-order

properties such as convexity.

However, we need to prove that (
F−1

y ◦Φ
)(
·
) is convex, analytically:

I Φ(x), by itself, is equivalent to the (non-elementary) special function - the Error

function.

I Fy, is often, also, a (non-elementary) special function....

.. hence, dealing with a composition of two special functions.

In general, no (rigorous, analytical) proofs regarding convexity of
(
F−1

y ◦Φ
)

exist in the
literature.



General criterion: convexity of Transmutation maps:

Result 2:

Let:
I f (x) be a continuous density, corresponding to F(x), and:

I Φ(x) be the CDF of the standard normal distribution, and:

I y(x) =
(
F−1 ◦Φ

)(
x
)
.

Then, the following (equivalent) conditions imply convexity of y(x), for all x:

I f ′(y(x))
f 2(y(x)) ≤

φ′(x)
φ2(x) for all x,

(
where f ′(y(x)) = d

dz f (z)
∣∣∣∣z=y(x)

)

I d
dx ln

[
f (y(x))

]
≤ d

dx ln
(
φ(x)

)
for all x.



Results for common loss distributions:

Result 3:

Let:

I f (x) be a lognormal distribution, with parameters µ, σ

I Φ(x) be the CDF of the Standard Normal distribution

Then:
y(x) =

(
F−1 ◦Φ

)(
x
) is convex for all x, and all µ, and σ

Result 4:

Let:

I f (x) be a two-parameter Pareto distribution with parameters α, θ

I Φ(x) be the CDF of the Standard Normal distribution

Then:
y(x) =

(
F−1 ◦Φ

)(
x
) is convex for all x, and all α, θ



The Gamma distribution:

Proving the convexity of
(
F−1 ◦Φ

)(
x
)

when F(·) the Gamma distribution (regularized
incomplete gamma function), is much more difficult.

I The CDF of the Gamma is an especially intractable special function:

I Tricomi fondly referred to it as ”the Cinderella of special functions”

I .. can be represented in terms of various special functions:

I Confluent Hypergeometric function, Bessel functions, etc..

I Related to a famous conjecture of Ramanujan’s (circa 1913):

I ... that 1
3 < θ(n) < 1

2 (for any n) in the following equality en

2
=

n−1∑
k=0

nk

k!
+ θ(n)

nn

n!

I Choi (1994) proved that 1− θ(α) =

( e
α

)α ∫ m(α+1)

α
tαe−tdt

where m(α+ 1) is the median of a gamma distribution with shape parameter α+ 1.



The Gamma distribution:

.. to make matters worse
(
F−1 ◦Φ

)(
x
)

involves the quantile function (inverse) of the
CDF of the Gamma distribution..

F−1
α (z) =

[
− (z−1)Γ(α+ 1)

] 1
α +

([
− (z−1)Γ(α+ 1)

] 1
α

)2

α+ 1
+

(
3α+ 5

)
·
([
− (z−1)Γ(α+ 1)

] 1
α

)3

2(α+ 1)2(α+ 2)
+ O

(
(z−1)

4
α

)

Result 5:

Let:

I f (x) be a gamma distribution with shape parameter α, and scale
parameter θ.

I Φ(x) be the CDF of the Standard Normal distribution.

Then:
y(x) =

(
F−1 ◦Φ

)(
x
) is convex for all x, and all α, θ.



Systematic Bias:

... Back to the original question:

Is there some systematic bias in the estimates from the approximate
method, verses those from Copula Regression?

Answer: Yes...

I If (all) the marginal distributions are modeled using one of the
standard loss distributions (Lognormal, Pareto, or Gamma)

.... Further, this holds for any permissible parameter values of the Lognormal, Pareto,
or Gamma distributions.

In this case, the estimates from the Linear Approximation to Copula
Regression will always, at least, slightly underestimate the true
values.
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