

Crashing, Crash Avoidance and the Future of Driving

CAS Annual Meeting November 13, 2018

Matt Moore, Senior Vice President HLDI

iihs.org

IIHS is an independent, nonprofit scientific and educational organization dedicated to reducing the losses — deaths, injuries and property damage — from crashes on the nation's roads.

HLDI shares this mission by analyzing insurance data representing human and economic losses from crashes and other events related to vehicle ownership.

Both organizations are wholly supported by auto insurers.

IIHS – HLDI supporting groups

AAA Carolinas Acceptance Insurance Alfa Alliance Insurance Corporation Alfa Insurance Allstate Insurance Group American Agricultural Insurance Company American Family Mutual Insurance Company American National Ameriprise Auto & Home Amica Mutual Insurance Company Auto Club Enterprises Auto Club Group Auto-Owners Insurance **Bitco Insurance Companies** California Casualty Group Celina Insurance Group Censtat Casualty Company CHUBB Colorado Farm Bureau Mutual Insurance Company **Concord Group Insurance Companies** COUNTRY Financial CSAA Insurance Group **Desiardins Insurance** ECM Insurance Company Elephant Insurance Company **EMC Insurance Companies** Erie Insurance Group Esurance Farm Bureau Financial Services Farm Bureau Insurance of Michigan Farm Bureau Mutual Insurance Company of Idaho Farmers Insurance Group Farmers Mutual of Nebraska Florida Farm Bureau Insurance Companies Frankenmuth Insurance Gainsco Insurance **GEICO** Corporation The General Insurance

Georgia Farm Bureau Mutual Insurance Company

Goodville Mutual Casualty Company Grange Insurance Grinnell Mutual Hallmark Financial Services Hanover Insurance Group The Hartford Haulers Insurance Company, Inc. Horace Mann Insurance Companies Imperial Fire & Casualty Insurance Company Indiana Farm Bureau Insurance Indiana Farmers Insurance Infinity Property & Casualty Kemper Corporation Kentucky Farm Bureau Mutual Insurance Companies Liberty Mutual Insurance Company Louisiana Farm Bureau Mutual Insurance Company The Main Street America Group Mercury Insurance Group MetLife Auto & Home Mississippi Farm Bureau Casualty Insurance Company MMG Insurance Munich Reinsurance America, Inc. Mutual Benefit Group Mutual of Enumclaw Insurance Company Nationwide New Jersey Manufacturers Insurance Group Nodak Mutual Insurance Company Norfolk & Dedham Group North Carolina Farm Bureau Mutual Insurance Company Northern Neck Insurance Company Ohio Mutual Insurance Group Old American Indemnity Company Oregon Mutual Insurance Company Paramount Insurance Company Pekin Insurance PEMCO Insurance **Plymouth Rock Assurance**

Progressive Insurance

Qualitas Insurance Company Redpoint County Mutual Insurance Company The Responsive Auto Insurance Company Rider Insurance Rockingham Group RSA Canada Safe Auto Insurance Company Safeco Insurance Samsung Fire & Marine Insurance Company SECURA Insurance Selective Insurance Company of America Sentry Insurance Shelter Insurance Companies Sompo America South Carolina Farm Bureau Mutual Insurance Company Southern Farm Bureau Casualty Insurance Company State Farm Insurance Companies Stillwater Insurance Group Tennessee Farmers Mutual Insurance Company Texas Farm Bureau Insurance Companies The Travelers Companies United Educators USAA Utica National Insurance Group Virginia Farm Bureau Mutual Insurance West Bend Mutual Insurance Company Western National Insurance Group Westfield Insurance

Funding associations

American Insurance Association National Association of Mutual Insurance Companies Property Casualty Insurers Association of America

Haddon matrix

Recognizing opportunities to make a difference

	pre-crash	during crash	after crash
people	graduated licensing impaired driving laws automated enforcement	safety belts helmets	medical bracelets general health
vehicles	crash avoidance technology	airbags crashworthiness truck underride guards	automatic collision notification fuel system integrity
environment	roundabouts rumble strips	roadside barriers breakaway poles	emergency medical services long-term rehabilitation

CBS Evening News

Crash Trends

IIHS HLDI

U.S. motor vehicle crash deaths and deaths per billion vehicle miles traveled

1950-2017

INSURANCE INSTITUTE FOR HIGHWAY SAFETY

Collision claim frequencies

By calendar year and vehicle type, 4 most current model years

Collision claim severities

By calendar year and vehicle type, 4 most current model years

Collision overall losses

By calendar year and vehicle type, 4 most current model years

Vehicle crashworthiness

IIHS HLDI

Crash protection ratings by model year

Improvements beginning in 1995

IIHS

Π

Death and injury reductions for good vs. poor rating IIHS crashworthiness tests

Fatality risk in head-on crashes is 46 percent lower

50 percent of model year 2016 series is good rated

Fatality risk in side impact crashes 70 percent lower in addition to the benefit of adding side airbag protection for the head

46 percent of model year 2016 series is good rated

Neck injury risk in rear crashes is 15 percent lower

Risk of neck injury requiring 3+ months treatment is 35 percent lower

Registered vehicle moderate overlap front crash test ratings

All registered vehicles, by calendar year

2017 ratings for registered vehicles

All registered vehicles

Advertisements:

TOP SAFETY PICK

2015 Nissan Tsuru and 2016 Nissan Sentra

Evaluations of Advanced Driver Assistance Systems (ADAS)

II<mark>H</mark>S

HLDI collision avoidance analysis

- The HLDI database includes data from companies that represent 85% of private passenger auto insurance in the U.S.
- On a monthly basis, HLDI processes 320 million insurance data transactions
- The insurance data includes the garaging zip code and rated driver demographics
- Manufacturers shared with us 17 digit VINs and information about collision avoidance systems fitted to those vehicles
- Our collision avoidance analysis used the manufacturer supplied feature data along with our geographic and demographic data
- Large amount of timely data
- Limited information on crash circumstances

Summary of technology effects on insurance claim frequency

Results pooled across automakers

Percent distribution of matched pairs of collision & PDL estimates by point of impact

1981-2017 models, 2016 calendar year

Summary of technology effects on collision claim severity

Results pooled across automakers

Change in collision claim frequency

By severity range

HLDI and police-reported crash data

Insurance data

- Large amount of timely data
- Limited information on crash circumstances

Police-reported crash data

- More detailed information on crash type
- Limitations
 - Some crashes not reported to police
 - Delay in obtaining data
 - Data collected not uniform among states, and not all states have information to determine crash types

Most crash avoidance technologies are living up to expectations

Effects on relevant police-reported crash types

Front crash prevention testing and rating

Front crash prevention ratings

vehicles without forward collision warning or autobrake; or vehicles equipped with a system that doesn't meet NHTSA or IIHS criteria

vehicles earning 1 point for forward collision warning or 1 point in either 12 or 25 mph test

vehicles with autobrake that achieve 2-4 points for forward collision warning and/or performance in autobraking tests

vehicles with autobrake that achieve 5-6 points for forward collision warning and/or performance in autobraking tests

25 mph \$28,131

12 mph \$5,715

Speed reduction in 12 and 24 mph tests

Volvo S60 2 point advanced Dodge Durango 3 point advanced Subaru Outback 6 point superior

Front crash prevention ratings

2013-18 models

20 automakers have committed to make AEB a standard feature by September 2022

Hyundai advertisement

Headlight testing and ratings

IIHS HLDI
Toyota Prius v LED and BMW 3 series halogen

On-road comparison

Headlight ratings

2016-2018 model years - all headlight variants

Evaluations of system status

II<mark>HS</mark> HLDI

On-off status of front crash prevention systems

By manufacturer

	percent with system on	number observed	
Cadillac	92	206	
Chevrolet	87	142	
Honda	98	239	
Mazda	95	20	
Volvo	94	52	
total	93	659	

On-off status of lane-maintenance systems

By manufacturer

	percent with system on	number observed
Cadillac	56	204
Chevrolet	50	147
Ford/Lincoln	21	115
Honda	36	239
Lexus/Toyota	68	147
Mazda	77	26
Volvo	75	105
total	51	983

On-off status by maximum observable lane-maintenance intervention level

Percent with system on

GM lane departure warning on-off status by warning modality

		percent with system on	number observed
beep	Cadillac	33	18
	Chevrolet	39	66
	total	38	84
vibrating seat	Cadillac	58	142
	Chevrolet	49	49
	total	56	191

Advertisement:

Lane valet

Park assist systems

IIHS HLDI

Drivers must respond to sensors for them to work

II**HS** HLDI

Objects are not always easy to see in the camera display

Rearview cameras can help drivers avoid backing over objects in reverse

IIHS HLDI

Technology influences the way we look around the vehicle while backing

Percentage of time spent looking at different fields of view

Rear automatic braking

IIHS HLDI

Rear automatic braking

Change in claim frequency

Test vehicles

2017 BMW 5 series

2017 Cadillac XT5

2017 Infiniti QX60

2017 Jeep Cherokee

2017 Subaru Outback

2017 Toyota Prius

Benefit of rear autobrake

Benefit of rear autobrake

Tesla Model S driver assistance technologies

Tesla timeline

Tesla Model S versus large luxury vehicles

Collision claim frequency, by model year

Tesla Model S claim frequencies with and without driver assistance technology versus large luxury vehicles

Effect of driver assistance technology, including Autopilot

Estimated effect of Tesla Model S Autopilot on claim frequency

Driver assistance technology plus Autopilot vs. early driver assistance technology alone

Distribution of collision claims, 2016 calendar year

By claim size, 1981-2017 models

Level 2 automation

IIHS HLDI

Lane keeping on hills

On-road testing – Tesla Model S

Tesla "Autopilot" – IIHS examples

Problems: stopped lead vehicle

On-road testing – Mercedes-Benz E-Class

Problems: turn lanes

On-road testing – Mercedes-Benz E-Class

Experiences with driving automation

IIHS HLDI

The automation made smooth, gentle steering corrections

Percentage of drivers who agreed or strongly agreed

Adaptive cruise control trusted more than active lane keeping

Percentage of drivers who agreed or strongly agreed

Functional performance of adaptive cruise control and active lane-keeping systems

Lane keeping in curves - Tesla

Lane keeping in curves - BMW

Lane keeping in curves

Lane keeping on hills - Mercedes

Lane keeping on hills - Volvo

Lane keeping on hills

Phase in of collision avoidance systems

New vehicle series with rear camera

By model year

Registered vehicles with rear camera

By calendar year

New vehicle series with autonomous emergency braking By model year

Registered vehicles with autonomous emergency braking

By calendar year

Estimated registered vehicles by feature

Calendar years 2017 and 2022

HLDI analysis of marijuana legalization

Laws legalizing some uses of marijuana

March 2018

Estimated effect of marijuana sales

Collision claim frequencies for vehicles up to 33 years old Calendar years 2012–17

Colorado marijuana retail tax revenue

February 2014–January 2018

Washington marijuana retail tax revenue

July 2014–October 2017

Oregon marijuana retail tax revenue

February 2016–January 2018

IIHS HLDI

Nevada marijuana retail tax revenue

July 2017–December 2017

Speed limits and traffic fatalities

Maximum speed limits

January 1993

Maximum speed limits

January 2013

Deaths and expected deaths if maximum speed limits had not increased

1993-2013

Maximum speed limits

June 2017

Percent change in mean horsepower and fuel economy

1985-2014 models

Honda Accord

1981 Honda Accord horsepower: 75 curb weight: 2,249 lbs.

3.3 horsepower per 100 lbs.

2015 Honda Accord base horsepower: 185 curb weight: 3,254 lbs.

5.7 horsepower per 100 lbs.

2015 Honda Accord 6-cylinder horsepower: 278 curb weight: 3,554 lbs.

7.8 horsepower per 100 lbs.

Percent increase in overall insurance losses per unit of power by rated driver age

4-door cars, 2003-05 models

Percent increase in mean vehicle speed per 10 horsepower/100 lb. increase by speed limit

The costs of crashing

IIHS HLDI

Turbo and supercharged engines

IIHS HLDI

Turbo and supercharged engines

Pooled

turbo/supercharged exposure (years)	12,925,939
non-turbo/supercharged engines exposure (years)	21,967,095
calendar years	2005-16
unique make, series, model, engine price points	December 2016: 1,556 April 2017: 5,032
covariates	calendar year, model year, make, series, state, vehicle density, rated driver age group, gender, marital status, deductible, risk, base price, horsepower-to-curbweight ratio
method	vehicle series that have models with and without turbo/supercharged engines

Turbo and supercharged engines

Collision losses

Percent of vehicles with turbo and supercharged engines

By model year

Hybrid and electric vehicles vs. conventional counterparts

IIHS III N

Registered hybrid vehicles

Calendar years 2000–17

Percent of hybrid vehicles in registered vehicle fleet Calendar years 2000–17

Registered electric vehicles

Includes all electric vehicles, calendar years 2008-17

Percent of electric vehicles in registered vehicle fleet

Includes all electric vehicles, calendar years 2008-17

Average base price

Average curb weight (lbs.)

2017 Porsche Cayenne 4WD

2017 Porsche Cayenne 4WD Base price: \$60,650 Curb weight: 4,488 lbs. 2017 Porsche Cayenne hybrid 4WD Base price: \$79,750 Curb weight: 5,181 lbs.

2017 Kia Soul station wagon

2017 Kia Soul station wagon Base price: \$18,400 Curb weight: 2,884 lbs. 2017 Kia Soul electric station wagon Base price: \$33,145 Curb weight: 3,289 lbs.

Average miles per day

Hybrid and electric vehicles and their conventional counterparts

Percent of study exposure

Estimated collision losses

Hybrid and electric vs. conventional

Estimated PDL losses

Hybrid and electric vs. conventional

Ford F-150 collision losses

II**HS** HLDI

Ford F-150 estimated change in collision insurance losses

2015 model year compared to 2014 model year

Percentage of claims with delayed payment information

Ford F-150 compared to comparably-sized pickups

Ford F-150 part pricing comparison

Source: Audatex software and Mitchell

	2014 model year			2015-16 model year			2015-16 vs. 2014
part	Apr-15	Mar-16	Apr-17	Apr-15	Mar-16	Apr-17	Apr-17
hood	\$880	\$1,201	\$1,201	\$880	\$823	\$489	-52%
fender	\$268	\$272	\$307	\$268	\$264	\$205	-33%
front bumper	\$929	\$929	\$930	\$528	\$528	\$548	-41%
headlight	\$270	\$270	\$271	\$248	\$251	\$179	-34%
rear bumper	\$584	\$584	\$592	\$794	\$794	\$816	38%
exhaust pipe	\$689	\$689	\$612	\$522	\$522	\$488	-20%
bedside	\$654	\$654*	\$760	\$967	\$864	\$852	12%
taillight	\$123	\$115	\$115	\$144	\$108	\$79	-31%
total	\$4,397	\$4,534	\$4,608	\$4,351	\$4,154	\$3,656	-21%

* Price unavailable so prior year's price used

Effect of Takata airbag recall on total losses

Study design

- Collision exposure and claims for vehicles affected by a Takata airbag recall were separated into pre- and post-recall periods based on recall date
- For vehicles affected by multiple Takata airbag recalls, the date of the first related recall was used
- Focused on vehicles recalled between 2013 and 2015
- Vehicles recalled in 2016 were excluded due to insufficient post-recall data
- Vehicles of same model year, size and class currently not affected by a Takata airbag recall constitute the control population

Takata airbag recall regression analysis

collision exposure (years)	565,994,659			
model years	2000-11			
covariates	calendar year, vehicle age, state, vehicle density, rated driver age group, gender, marital status, deductible, risk, vehicle size and class, vehicle age x vehicle size and class, recall status			

I.

Change in collision insurance losses

Takata recalled vehicles vs. nonrecalled vehicles

Odds ratio of collision claims declared total loss

Takata recalled vehicles post recall vs. pre recall

Overall impact of Takata recall

Assume that

- Estimated average 2.6 percent increase in severity true for all recalled vehicles
- Every collision claim for recalled vehicles after being recalled is affected
- "But for" Takata airbag recalls, subsequent airbag shortages and drop in value of affected vehicles, payment amounts for claims of recalled would have been on average 2.6 percent less
- Under these assumptions, over \$150 million in insurer costs due to higher collision severity are associated with Takata recall

Takata airbag recalls

Recent events

- February 2018: Ford expands recall of the 2006 Ranger and advises owners to stop driving them immediately.
- > January 2018: Takata announces recall of another <u>3.3 million</u> front airbag inflators.
 - Audi, BMW, Fiat Chrysler, Ford, General Motors, Honda, Jaguar, Land Rover, Mazda, Mercedes-Benz, Mitsubishi, Nissan, Subaru, Tesla and Toyota
- October 2017: Mitsubishi recalls 2004–06 Lancer models a <u>second time</u>. The initial 2015 recall replaced them with the same Takata part since <u>no inflators were available</u> without ammonium nitrate.
- August 2017: Ford recalls <u>650 brand-new vehicles</u> that have defective airbags. These faulty inflators were made by ARC Automotive, which NHTSA has been investigating since July 2015. NHTSA estimates that up to <u>8 million inflators</u> may be defective in Chrysler, GM, Kia and Hyundai models in the U.S.
- July 19, 2017: Driver of 2002 Honda Accord died as result of defective Takata airbag. At least <u>22 people</u> worldwide have died from a faulty Takata airbag.
- In 2017 alone, there were over <u>1.2 million collision claims</u> for vehicle series affected by a Takata airbag recall in the HLDI database.

Takata airbag recalls

Percentage of airbags repaired (NHTSA)

NHTSA estimates approximately <u>37 million vehicles</u> and <u>50 million defective Takata airbags</u> are under recall

Glass losses

IIHS HLDI

Comprehensive claims and dollars

By loss type, 2015–17 models

Glass claim severities

By calendar year and vehicle type, 4 most current model years

Subaru glass losses associated with ADAS and moonroofs

Subaru glass losses

Methods

coverage type	comprehensive - glass
exposure (years)	1,049,918
model year and vehicles	2013–17 Subaru Legacy and Outback
calendar years	2012–18
covariates	calendar year, vehicle age, state, vehicle density, rated driver age group, gender, marital status, deductible, risk, EyeSight, moonroof, rear-vision camera

Т

Subaru glass losses – EyeSight, moonroof, rear-vision camera

2013–14 Subaru Legacy and Outback

Glass losses associated with Panoramic roofs

Pooled

panoramic roof standard exposure (years)	81,751
panoramic roof optional exposure (years)	71,371
panoramic roof not available exposure (years)	380,653
model year(s) & vehicle	2014-15 Kia Sorento 2016 Kia Sportage
calendar years	2013-17
covariates	calendar year, model year, make, series, state, vehicle density, rated driver age group, gender, marital status, deductible, risk
method	vehicle series that have models with and without a panoramic roof standard and optional vs. not available

2014 Kia Sorento

2014 Kia Sorento

2016 Kia Sportage

Percent change in glass insurance losses by availability

Glass losses: repair vs. replace

IIHS HLDI

Glass claim size distribution

2015–17 models

glass loss amount

Percentage of glass claims under \$125

By vehicle type and size and class, 2015–17 models

95th percentile of glass claims

By vehicle type and size and class, 2015-17 models

Percentage of glass claims under \$125 by calendar year

Based on vehicles up to 3 years old

Animal strike losses

IIHS HLDI

National comprehensive claim frequencies for animal strikes January 2006–December 2017

Comprehensive claim frequencies for animal strikes in selected states

Compared with national average, January 2006–December 2017

November animal-strike claims

Per 1,000 insured vehicle years

November animal-strike frequency

Per 1,000 insured vehicle years

Y94 radio talk show Fargo, ND

More information and links to our YouTube channel, Twitter feed and Facebook page at iihs.org

iihs.org