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ESTIMATION

= Prob

" Hes

ems wit

n MLE known since Charles Stein 1956 paper

nowed t

nat when estimating 3 or more means, shrinking

them all towards the grand mean reduces predictive variance

= James-Stein estimator same as Buhlmann’s 1968 method — ratio of
within and between variances determines degree of shrinkage

= Only difference is Stein assumed normal distribution MLE,
Buhlmann assumed least squares — really the same thing



SOMETHING SIMILAR FOR REGRESSION

" Hoerl and Kennard 1970 paper minimized NLL plus selected A times sum
of squared parameters, excluding the constant term

" Produces shrinkage towards mean for fitted values, since they first
standardize all variables to make them mean zero, variance one

= All fitted values are grand mean (= constant) + terms with mean zero

= Showed that there is always some value of A that produces error variance
less than that from MLE — but didn’t have a good way to find it

= Application of a general method called regularization used for estimating
difficult models, so sometimes is called regularization



NEXT

® That is called ridge regression based on their derivation

® Then in 1990s lasso minimized NLL + A*sum of absolute values

= Modelers like that because some parameters go to exactly zero,
so it is variable selection as well as error reduction

= Cross-validation used as way to select A

= Divide sample into groups, estimate by leaving out a group, get
NLL for omitted group, repeat for all groups. Find best A.



ENTER BAYESIAN SHRINKAGE

= Giving priors mean & mode of 0 shrinks parameters towards O

= Normal prior gives ridge regression as posterior mode
= Double-exponential = Laplace prior does this for lasso

= Has an extreme form of cross-validation, leave one out (loo),
which makes every sample value an omitted group

" | oo=NLL of the omitted points — a good estimate of the NLL of
a completely new sample — so is adjusted NLL like AlC, BIC, etc

= Can be computed very efficiently from the posterior estimates



IT’S NOT YOUR GRANDFATHER'’S BAYESIAN ANALYSIS

= Simulation method for posterior (MCMC) does not
need specification of the form of the posterior — just
likelihood and priors. Good software available — Stan.

= Bayesian estimation not connected to beliefs — priors
are part of the model and evaluated results they give

= Might change the priors after you see the posteriors

= Also can put prior on A to get posterior estimate of it



BAYESIAN SHRINKAGE REPLACES MLE AND
LASSO, RIDGE REGRESSION TOO

= Reduces estimation and prediction variances over MLE

= Also MCMC gives parameter distributions which lasso doesn’t have

# MCMC usually fairly robust as to selection of priors

® | oo allows choice of A as well as goodness of fit test; lasso lacking it

= Putting prior on A usually similar to optimizing loo, and often having
posterior for A does slightly better than any one A. So just run once.

" Good case that posterior mean better than mode that lasso gives

= Mode can be overly responsive to features of the given sample



DIRECTLY APPLIES TO REGRESSIONS AND GLM USED FOR CLASS

RATEMAKING

= Bayesian shrinkage better than MLE for any multivariate estimation

= Easiest for models with a vector of observations and a design matrix
= Shrinks parameters, maybe some to zero, eliminating some variables
= Can start with lot of variables and this chooses the best combination
" | tried it on data from Fu-Wu paper, Variance 01-02.

= Has loss severity by age and use, with claim count as volume measure

= Fitted multiplicative model with parameter for each age, use, log link



STAN KEPT ALL AGE VARIABLES BUT COMBINED SHORT DRIVE TO

WORK AND PLEASURE USE CLASSES. GRAPH ACTUALVS. FITTED
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USE IN HIERARCHICAL MODELS

= Generally considered to be models with data at various "levels” — interpreted broadly

= E.g,levels could be by state, then county within state then municipality within county, with an
additional variable of sourcing agent, or other things — distance to fire station, ...

= A lot of states could start with expected zero difference from countrywide, then many
counties with zero difference from state, similar for municipalities, and sourcing agent

= Could do the same with interaction terms between variables — a lot shrink away, some not

= Could have age group classes, then individual ages, but with many of those shrinking to the
group average, etc. — can help to define age groups as well

= But levels could be layers of modeling assumptions too — make prior for A, which is prior for 3

= Also MCMC allows non-linear models — could have additive plus multiplicative model



USING ON LOSS TRIANGLES —
ADDITIVE OR MULTIPLICATIVE MODELS

= Need all row, column factors so don’t want to eliminate them

= One approach based on Barnett, Zehnwirth’s 2000 CAS paper:

= Fit piecewise linear curves to parameters in each direction, shrink slope
changes of curves. Now can do it with Bayesian shrinkage

= Sahin & | do this for Bayesian shrinkage in mortality triangle model
in 2018 Astin paper (like reserving but bigger triangles)

= Gao, Meng 2018 Astin paper similar for reserve model, but fits
cubic splines instead of piecewise linear curves



DETAILS OF THIS FITTING

= Want to put in regression form, so string out the rectangle into a
column, keeping track of row and column for each cell

= Regression would make a (0,1) dummy variable for each row,
column, and diagonal, taking value = 1 at cells they affect, so
coefficient * dummy gets to cells for right rows and columns

= Slope changes are 2nd differences of parameters and add up to
the parameters — just need more complicated dummies

= The dummy for row u in a cell from row j takes value:

= Max(0, 1+j-u). Same for columns, diagonals - numbered from 1



MODEL USING ROVY, COLUMN, DIAGONAL PARAMETERS

= Mean for log of data with row, column, and diagonal parameters p,,, q,,and r.,, :
" Uyy =C+py + qy + 1y — usually with a log link

= Used e#wu as the a,,, parameter of a gamma distribution with mean = a,, b and
Var = a,, b? with b constant across cells.Variance = b*mean, like in ODP (can’t do
this in GLM)

= Exponentiation of p,,, q,, gives the row and column factors

= Y = Xp is the fitted u,,,, vector.

= Same thing works when dummy variable is a slope change dummy max(0, 1+j-u).

= Still e is the vector of gamma a,,, parameters

= With shrinkage, resulting row, column, diagonal factors are on piecewise linear
curves



EXAMPLES

= Two 10x9 paid loss ratio triang

= Fit row-column (accident year,

es for US commercial auto

ag) and column-diagonal (lag, payment

year) models first, then tried al

3 directions

= Took out any variables with parameters near zero with wide estimation
ranges if doing so did not hurt loo penalized loglikelihood measure

= For State Farm, AY-lag model fit best by loo, for USAA lag-PY best

= Fach model had two variables eliminated — so just continues existing
piece-wise linear slope at those points

= Adding third direction didn’t help either model



ADDITIVE ADJUSTMENT

= Muller’s 2016 Variance paper suggested adding a factor for each column, which
is multiplied by exposure by row and then added to the row*column mean

"= Like adding in a Cape Cod model.The factor model a,,, =A,B,C,,, goes to

"a,,=A,B.C,.+ D,E,,with exposure E, by AY, and lag factors D,

u=w?

= Again use 2nd difference ¢

= Since triangle already divic

ummies for the logs of the new factors

ed by premium, made that the exposure and E,= 1.

= This improved loo for bot

n triangles, but for USAA none of the original lag

parameters was then significant so became a purely additive model

aW,U - CW,U t DU



STATE FARM FACTORS, 2 MODELS
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Exposure term makes each fitted value a linear model of the
row factors, not just a multiple. Picked up acceleration of
payments in more recent years.



WHICH SHRINKAGE PRIORS?

= Used double-exponential prior on all the 2" difference parameters — like lasso
= But Student’s-t with one dof, called Cauchy distribution, becoming popular too

= Heavier tailed but also stronger push towards zero — most parameters shrink more
but some could be a lot bigger

= Tends to produce more parsimonious models but can have better fits by loo

" Tried this for USAA model before exposure adjustment — fit slightly worse but more
parsimonious according to loo parameter penalty

= |f process generating data is subject to change, this could be a better model
= Student’s-t with two dof tried in other models, and seems to work very well

= Double exponential very similar to t with 6 dof — matches all 5 moments of that t



CAUCHY VS. DOUBLE EXPONENTIAL
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CONCLUSIONS

= Bayesian shrinkage has lower predictive variance than MLE — can use
instead of MLE to get better predictions in almost all models

= Recent advances include goodness of fit measure; direct fitting without a
lot of shrinkage choices; no need to specify posteriors — so as easy as MLE

" Good R packages available
= Fitting process like for MLE — try models, compare fits
= Flexible choice of distributions and model forms like additive-multiplicative

= Fit curves to factors using 2" differences for row-column models
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