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Statement of the Problem

 We like severity curves because:

− They imply increased limit factors

− They allow us to price excess (re)insurance

 Fitting a curve to property losses is straightforward

 Fitting a curve to liability losses, which develop slowly, 

is not straightforward

− Claim values change and new claims emerge

− Mixture of ages/reporting lags

 In reinsurance the dataset is typically small

− Survey of current methods at the end of the paper 

shows a reliance on large, detailed datasets
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Overview of Proposed Solution

 Fit claims within each accident year and age, now you have a triangle of e.g. 𝜇’s and 𝜎’s 

for a lognormal family

− Now development does not need to reference individual claim amounts

 𝜇’s of a given accident year follow a stochastic process

− This structure plus recognition of variance parameters lowers dimensionality (versus 

unconstrained link ratio analysis)

 Bayesian statistics allows low volume reinsurance data to be used with an informative 

prior distribution

− Modern way of credibility weighting experience and exposure
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Fit Claims within Accident Year and Age

 Instead of trying to trend and develop individual losses and fit a mixture of AY’s and ages, 

fit a curve to claims of a single AY and age

 Then you have a triangle of 𝜇’s when fitting lognormal family (e.g.)
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Graph the 𝜇’s to See the Stochastic Process

 Each line is a single accident year and appears to follow a smooth curve with error

− Also an increase between each line (on average) representing trend/inflation
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Parameterize the Stochastic Process

 Two triangles with ~ 𝑁2 values are transformed to pair of stochastic processes with 11 

total parameters

 I assumed both 𝜇 and 𝜎 fit an exponential decay model

− 𝜇 𝑖 = 𝜇 𝑖 − 1 + 𝑎 ∗ 𝑒−𝑏∗𝑖 + 𝜖
− Method can be extended to more general shape of the curve



7

Estimate Posterior Distribution of Variable of Interest

 Data + Model + Prior Distributions + R + stan = Posterior Distributions

− Design ensures that volume of data is balanced against certainty of prior estimates

− Particularly helpful in reinsurance applications which have low data volume
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Bayesian Hierarchical Models

 This model is an example of a Bayesian hierarchical model, which just means there are 

multiple layers of unobserved variables in the model

claim size for Nth claim in AY i, age j

Unobserved

Observed

…

𝜎(𝑖, 𝑗)𝜇(𝑖, 𝑗)

𝜇𝑠𝑡𝑎𝑟𝑡 𝜇𝑖𝑛𝑐𝑟 𝜇𝑔𝑟𝑜𝑤𝑡ℎ 𝜖 𝑖, 𝑗

𝑠𝑑𝜇(𝑖, 𝑗)

𝑟𝜇 𝑝𝜇

𝑡𝑟𝑒𝑛𝑑
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Final Thoughts

 Paper provides full data and code to reproduce results and use for yourself

 Important to note that this model is severity only, but could be combined with a similar 

approach to frequency (Mildenhall, Forum, 2006) for a Bayesian reinsurance pricing 

model

 Does not replace actuarial judgement, just shifts analysis away from triangulating losses 

and determining credibility weight on experience vs. exposure to crafting prior 

distributions

− Remember, credibility was an approximation to Bayesian posterior estimates all along

 We have done this analysis on real data maybe 10 times, each time 𝜇 has followed 

exponential decay, but 𝜎 was more complex

− Still always followed a pattern, but may need 1 more parameter to model

 Questions? Thank you!


