Excess Ratio Simulation and Variability of Observed Results Presented by Leigh J. Halliwell, FCAS, MAAA Actuary CAS Annual Meeting November 12, 2018 Las Vegas, Nevada 6) Consciete 2019 National Council on Compensation Insurance, Inc. 48 Sinter Reserve #### Introduction - Excess loss ratios are essential items of Workers Compensation ratemaking - Retrospective rating and deductible pricing - Excess ratios correspond with severity distributions. NCCI develops excess ratio curves by combining classes into hazard groups (HG) according to their excess loss potential - NCCI is currently reviewing its mapping of classes into HGs - Four groups, pre-2007: I, II, III, and IV - Post 2007, seven groups: A-G - Credible excess loss information requires more data than most classifications can provide. NCCI must estimate excess loss at a hazard group level © Copyright 2018 National Council on Compensation Insurance, Inc. All Rights Reserved. #### Introduction (Cont'd) - How distinct are the hazard groups? - The following thought experiment is our attempt to shed light on this question - Using the current excess loss information for the seven extant HGs, we simulated excess losses from loss portfolios of various sizes - How variable are the observed results? - How well can we infer a portfolio's HG from an observed excess ratio? - This thought experiment will help NCCI set credibility standards as part of its hazard group review - Since the experiment simulates only process risk, it provides a lower bound to real-life variability #### **Agenda** - Definitions and Countrywide Parameters - Excess Ratios and Hazard Groups - Countrywide Claim Counts, Severities, and Weights - Illustrating the Effect of Noise on the Hazard Groups - Simulation Procedure - Observed Excess Ratios versus Expected for one HG - Observed Excess Ratios versus Expected for one Limit - Claim Count Distribution by Class - Distribution of Excess Ratios and HGs - Distribution of HGs by Excess Ratio at Nine Limits - Concluding Comments - Appendix #### **Excess Ratios and Hazard Groups** - Excess ratio at loss limit L: $R(L) = \int_{-\infty}^{\infty} (x-L) f_x(x) dx / \int_{-\infty}^{\infty} x f_x(x) dx$ - Random variable X represents one claim; R(L) is a per-claim excess ratio - For classes at the same limit, the more hazardous class has the greater excess ratio - The claims of many classes, even aggregated at a countrywide level, are too few to determine credible excess ratios - The dilemma of hazard grouping - Type I: mistaking noise for signal, thinking that the hazard is different when it's really the same - □ Type II: mistaking signal for noise, thinking that the hazard is the same when it's really different E Countet 2018 National County on Companyation (navages for AS Sixton Sausanet ## **Excess Ratios and Hazard Groups (Cont'd)** - NCCI has estimated countrywide excess ratio curves. They are in entry ratio form at a claim group (CG) level. The five claim groups are: - Fatal - Permanent Total - Permanent Partial and Temporary Total Likely-to-develop - Permanent Partial and Temporary Total Not-Likely-to-develop - Medical Only - Scaling them by severities *E*[*X*] converts them into dollar curves # **Excess Ratios and Hazard Groups (Cont'd)** - NCCI's latest Excess Loss Factor Calculations provided expected claim counts E[N] and severities E[X] by state, HG, and CG - Expected loss E[L] equals $E[N] \times E[X]$ - We raised these expected values to a countrywide level and scaled the five excess ratio curves for all the HG and CG combinations - The next two slides show the counts and severities, as well as the expected losses in excess of one limit, \$100K © Copyright 2018 National Council on Compensation Insurance, Inc. All Rights Reserved. # **Countrywide Claim Counts** | Distribution by Hazard Group and Claim Group | | | | | | | | | |--|-------|-------|---------|---------|---------|-------|-----------|--| | HG | Fatal | PT | PPTT(L) | PPTT(N) | MedOnly | Total | Claims | | | Α | 0.02% | 0.03% | 3.3% | 16.2% | 80.5% | 100% | 636,419 | | | В | 0.03% | 0.04% | 3.5% | 17.6% | 78.8% | 100% | 1,602,187 | | | C | 0.04% | 0.06% | 3.7% | 18.5% | 77.7% | 100% | 2,703,753 | | | D | 0.08% | 0.08% | 4.4% | 21.6% | 73.9% | 100% | 874,315 | | | E | 0.15% | 0.12% | 5.1% | 25.2% | 69.4% | 100% | 1,059,432 | | | F | 0.26% | 0.15% | 6.1% | 30.2% | 63.3% | 100% | 593,076 | | | G | 0.44% | 0.21% | 5.7% | 28.3% | 65.3% | 100% | 153,219 | | | ΔΠ | 0.08% | 0.07% | 4 1% | 20.5% | 75.2% | 100% | 7 622 402 | | Fitted five-year expected claim counts aggregated by state from the most recent NCCI Excess Loss Factor Calculation E Countriet 1018 National Countries of Company at the Institute Seasons of ## **Countrywide Severities and Weights** | HG | | Fatal | PT | PPTT(L) | PPTT(N) | MedOnly | |----|------------------------|---------|-----------|---------|---------|---------| | Α | E[X] | 268,273 | 1,117,513 | 82,887 | 26,351 | 1,325 | | | Excess Ratio at \$100K | 0.710 | 0.915 | 0.462 | 0.242 | 0.039 | | | Loss Weight | 0.5% | 3.4% | 32.3% | 51.0% | 12.8% | | В | E[X] | 305,803 | 1,543,147 | 104,318 | 32,192 | 1,481 | | | Excess Ratio at \$100K | 0.739 | 0.937 | 0.519 | 0.279 | 0.041 | | | Loss Weight | 0.7% | 5.6% | 32.8% | 50.5% | 10.4% | | С | E[X] | 317,569 | 1,687,465 | 113,131 | 34,572 | 1,503 | | | Excess Ratio at \$100K | 0.747 | 0.942 | 0.539 | 0.294 | 0.042 | | | Loss Weight | 1.0% | 7.9% | 32.4% | 49.6% | 9.1% | | D | E[X] | 333,701 | 1,918,221 | 133,067 | 39,946 | 1,544 | | | Excess Ratio at \$100K | 0.757 | 0.949 | 0.576 | 0.321 | 0.043 | | | Loss Weight | 1.6% | 8.8% | 33.5% | 49.5% | 6.6% | | E | E[X] | 372,044 | 2,389,996 | 157,832 | 45,391 | 1,705 | | | Excess Ratio at \$100K | 0.779 | 0.959 | 0.618 | 0.349 | 0.045 | | | Loss Weight | 2.2% | 12.3% | 33.2% | 47.3% | 4.9% | | F | E[X] | 404,362 | 2,882,545 | 192,595 | 53,404 | 1,942 | | | Excess Ratio at \$100K | 0.794 | 0.966 | 0.662 | 0.385 | 0.049 | | | Loss Weight | 3.1% | 12.4% | 34.2% | 46.8% | 3.6% | | G | E[X] | 436,802 | 3,377,770 | 215,517 | 57,159 | 1,878 | | | Excess Ratio at \$100K | 0.808 | 0.971 | 0.685 | 0.403 | 0.049 | | | Loss Weight | 4.9% | 18.4% | 31.9% | 41.7% | 3.2% | Severities, excess ratios, and loss weights are weighted averages of the corresponding amounts by state taken from the NCCI ELF methodo all formy limits from \$100t to \$100t properties. © Copyright 2018 National Council on Compensation Insurance, Inc. All Rights Reserved #### **Simulation Procedure** Within a portfolio of losses we simulate each of the five claim groups according to the collective risk model: $$S = X_1 + X_2 + \dots + X_N$$ - The claim count *N* is Poisson with a specified mean *E*[*N*] - The amounts X are independent and identically distributed - The size of a portfolio is the sum of the E[N] over CG, i.e., the expected claims for the entire HG - The portfolio's loss in excess of limit l is the sum of its claims' losses in excess of l. Excess ratios are excess losses divided by the total loss © Copyright 2018 National Council on Compensation Insurance, Inc. All Rights Reserved. #### **Simulation Procedure (Cont'd)** • Specify the HG size; e.g., E[N] = 5,000. Allocate it by CG: $$E \big[N \, \big] = E \big[N_{\scriptscriptstyle Fottal} \, \big] + E \big[N_{\scriptscriptstyle PT} \, \big] + E \big[N_{\scriptscriptstyle PPTT \, (L)} \big] + E \big[N_{\scriptscriptstyle PPTT \, (N)} \big] + E \big[N_{\scriptscriptstyle ModOnly} \, \big]$$ - □ Example for HG C: 5,000 = 2 + 3 + 185 + 924 + 3,886 - For each iteration, sample $N_{lac,cG}^{lac}$ claim counts from a Poisson distribution with mean $E[N_{lac,cG}]$ - Simulate claim severities $X_{Ho,cG}^{ior}(1), X_{Ho,cG}^{ior}(2), \dots, X_{Ho,cG}^{ior}(N_{Ho,cG}^{ior})$ from a discrete distribution based on the excess ratio curves - Tabulate excess losses and excess ratios at each loss limit *l*: $$XsLoss_{HG}^{iter}(l) = \sum_{CG} \sum_{i=1}^{N_{HG}^{iter}} \max(0, X_{HG \times CG}^{iter}(i) - l)$$ $$XsRatio_{HG}^{iter}(l) = XsLoss_{HG}^{iter}(l)/XsLoss_{HG}^{iter}(0)$$ #### **Key to the following Box-Whisker Plots** - 1800 1800 1400 1400 1200 - 10,000 draws from a gamma distribution with mean 1,000 and standard deviation 200 - Sample median = 987 - Q25 = 859; Q75 = 1,130 - Interquartile range IQR = Q75 Q25 = 271 - Whisker extremes: - Q25 1.5 × IQR = 452 - Q75 + 1.5 × IQR = 1,536 - Dots beyond the whiskers represent outliers - three outliers < 452 - ninety outliers > 1,536 - The box and whiskers of a normal distribution encompass 99.3% of the probability # **Claim Count Distribution by Class** | Total Claims (5 yrs) | Class Count | % | Cum % | |----------------------|-------------|-------|--------| | Less than 100 | 59 | 8.9% | 8.9% | | 100 to 200 | 42 | 6.3% | 15.2% | | 200 to 300 | 18 | 2.7% | 17.9% | | 300 to 400 | 25 | 3.8% | 21.7% | | 400 to 500 | 17 | 2.6% | 24.2% | | 500 to 1K | 80 | 12.0% | 36.2% | | 1K to 3K | 130 | 19.5% | 55.8% | | 3K to 5K | 70 | 10.5% | 66.3% | | 5K to 8,315 | 63 | 9.5% | 75.8% | | 8,315 to 16,625 | 66 | 9.9% | 85.7% | | 16,625 to 33,250 | 41 | 6.2% | 91.9% | | Over 33,250 | 54 | 8.1% | 100.0% | | | | | | ■ The expected five-year claim count of two thirds of the 665 classes is less than 5,000 © Copyright 2018 National Council on Compensation Insurance, Inc. All Rights Reserved. a #### **Distribution of Excess Ratios and HGs** - How well can we infer the hazard group of an excess ratio? - The table below reshapes the simulated data graphed in slide 20, i.e., Limit = \$100,000: 25,000 Iterations of 5,000 Expected Claims - With what probability can we assign a stray excess ratio (here rounded to the nearest percent, XsRat00) to the proper hazard group? - Correct assignment is most probable for ratios near their HG means | | Mean | | Adjacent | | Total | |----|---------|------------|----------|--------|-------------| | HG | XsRat00 | Correct HG | HGs | Others | Probability | | A | 31 | 41% | 38% | 21% | 100% | | В | 37 | 32% | 48% | 19% | 100% | | C | 40 | 32% | 54% | 14% | 100% | | D | 45 | 35% | 48% | 16% | 100% | | E | 50 | 36% | 47% | 17% | 100% | | F | 55 | 38% | 47% | 15% | 100% | | c | 60 | E 49/ | 210/ | 1 00/ | 1009/ | The Appendix provides details #### **Concluding Comments** - We deemed as a benchmark a portfolio of 5,000 expected claims at a loss limit of \$100,000 - The five-year *E*[*N*] of two-thirds of Workers Compensation classes is less than 5,000 - The between variance (VHM/TotVar) of this benchmark portfolio is 74% (see the Appendix) - Hazard groups grow more distinct with more expected claims, and less distinct with higher loss limits (full list in the Appendix) - By design, this simulation considers only process uncertainty. Parameter and model uncertainties would increase variability © Copyright 2018 National Council on Compensation Insurance, Inc. All Rights Reserved. recy ## **Appendix** - Distribution of Excess Ratios and HGs (3 slides) - Distribution of HGs by Excess Ratio at Nine Limits (5 slides)